3,380 research outputs found

    Locality and information transfer in quantum operations

    Full text link
    We investigate the situation in which no information can be transferred from a quantum system B to a quantum system A, even though both interact with a common system C

    Information transmission through a noisy quantum channel

    Get PDF
    Noisy quantum channels may be used in many information-carrying applications. We show that different applications may result in different channel capacities. Upper bounds on several of these capacities are proved. These bounds are based on the coherent information, which plays a role in quantum information theory analogous to that played by the mutual information in classical information theory. Many new properties of the coherent information and entanglement fidelity are proved. Two nonclassical features of the coherent information are demonstrated: the failure of subadditivity, and the failure of the pipelining inequality. Both properties arise as a consequence of quantum entanglement, and give quantum information new features not found in classical information theory. The problem of a noisy quantum channel with a classical observer measuring the environment is introduced, and bounds on the corresponding channel capacity proved. These bounds are always greater than for the unobserved channel. We conclude with a summary of open problems

    Axiomatic Information Thermodynamics

    Get PDF
    We present an axiomatic framework for thermodynamics that incorporates information as a fundamental concept. The axioms describe both ordinary thermodynamic processes and those in which information is acquired, used and erased, as in the operation of Maxwell's demon. This system, like previous axiomatic systems for thermodynamics, supports the construction of conserved quantities and an entropy function governing state changes. Here, however, the entropy exhibits both information and thermodynamic aspects. Although our axioms are not based upon probabilistic concepts, a natural and highly useful concept of probability emerges from the entropy function itself. Our abstract system has many models, including both classical and quantum examples.Comment: 52 pages, 5 figures. Revised 28 Mar 201
    corecore