155 research outputs found

    Function of glutathione in Arabidopsis immunity and glucosinolate metabolism

    Get PDF
    Induced defense responses in plants usually involve biosynthesis of antimicrobial metabolites and their targeted secretion at the site of pathogen contact. Our recent study on the model plant Arabidopsis revealed a novel pathogen triggered metabolism pathway for glucosinolates, amino acid-derived thio-glucosides characteristic for crucifer plants that so far were mainly known as insect deterrents (Bednarek et al. 2009)

    A chemical screen for suppressors of the avrRpm1-RPM1-dependent hypersensitive cell death response in Arabidopsis thaliana

    Get PDF
    Arabidopsis thalianaRPM1 encodes an intracellular immune sensor that conditions disease resistance to Pseudomonassyringae expressing the type III effector protein AvrRpm1. Conditional expression of this type III effector in a transgenic line carrying avrRpm1 under the control of a steroid-inducible promoter results in RPM1-dependent cell death that resembles the cell death response of the incompatible RPM1-avrRpm1 plant–bacterium interaction. This line was previously used in a genetic screen, which revealed two genes that likely function in the folding of pre-activation RPM1. We established a chemical screen for small molecules that suppress steroid-inducible and RPM1-avrRpm1-dependent cell death in Arabidopsis seedlings. Screening of a library comprising 6,800 compounds of natural origin identified two trichothecene-type mycotoxins, 4,15-diacetoxyscirpenol (DAS) and neosolaniol (NEO), which are synthesized by Fusarium and other fungal species. However, protein blot analysis revealed that DAS and NEO inhibit AvrRpm1 synthesis rather than suppress RPM1-mediated responses. This inhibition of translational activity likely explains the survival of the seedlings under screening conditions. Likewise, flg22-induced defense responses are also impaired at the translational, but not the transcriptional, level by DAS or NEO. Unexpectedly, both compounds not only prevented AvrRpm1 synthesis, but rather caused an apparent hyper-accumulation of RPM1 and HSP70. The hyper-accumulation phenotype is likely unrelated to the ribotoxic function of DAS and NEO and could be due to an inhibitory activity on the proteolytic machinery of Arabidopsis or elicitor-like activities of type A trichothecenes.Electronic supplementary materialThe online version of this article (doi:10.1007/s00425-010-1105-1) contains supplementary material, which is available to authorized users

    Structural polymorphisms within a common powdery mildew effector scaffold as a driver of coevolution with cereal immune receptors

    Full text link
    In plants, host-pathogen coevolution often manifests in reciprocal, adaptive genetic changes through variations in host nucleotide-binding leucine-rich repeat immune receptors (NLRs) and virulence-promoting pathogen effectors. In grass powdery mildew (PM) fungi, an extreme expansion of a RNase-like effector family, termed RALPH, dominates the effector repertoire, with some members recognized as avirulence (AVR) effectors by cereal NLR receptors. We report the structures of the sequence-unrelated barley PM effectors AVRA6_{A6}, AVRA7_{A7}, and allelic AVRA10_{A10}/AVRA22_{A22} variants, which are detected by highly sequence-related barley NLRs MLA6, MLA7, MLA10, and MLA22 and of wheat PM AVRPM2_{PM2} detected by the unrelated wheat NLR PM2. The AVR effectors adopt a common scaffold, which is shared with the RNase T1/F1 family. We found striking variations in the number, position, and length of individual structural elements between RALPH AVRs, which is associated with a differentiation of RALPH effector subfamilies. We show that all RALPH AVRs tested have lost nuclease and synthetase activities of the RNase T1/F1 family and lack significant binding to RNA, implying that their virulence activities are associated with neo-functionalization events. Structure-guided mutagenesis identified six AVRA6_{A6} residues that are sufficient to turn a sequence-diverged member of the same RALPH subfamily into an effector specifically detected by MLA6. Similar structure-guided information for AVRA10_{A10} and AVRA22_{A22} indicates that MLA receptors detect largely distinct effector surface patches. Thus, coupling of sequence and structural polymorphisms within the RALPH scaffold of PMs facilitated escape from NLR recognition and potential acquisition of diverse virulence functions

    Partial maintenance of organ-specific epigenetic marks during plant asexual reproduction leads to heritable phenotypic variation

    Get PDF
    While clonally propagated individuals should share identical genomes, there is often substantial phenotypic variation among them. Both genetic and epigenetic modifications induced during regeneration have been associated with this phenomenon. Here we investigated the fate of the epigenome after asexual propagation by generating clonal individuals from differentiated somatic cells through the manipulation of a zygotic transcription factor. We found that phenotypic novelty in clonal progeny was linked to epigenetic imprints that reflect the organ used for regeneration. Some of these organ-specific imprints can be maintained during the cloning process and subsequent rounds of meiosis. Our findings are fundamental for understanding the significance of epigenetic variability arising from asexual reproduction and have significant implications for future biotechnological applications

    Microbiota and Host Nutrition across Plant and Animal Kingdoms

    Get PDF
    Plants and animals each have evolved specialized organs dedicated to nutrient acquisition, and these harbor specific bacterial communities that extend the host's metabolic repertoire. Similar forces driving microbial community establishment in the gut and plant roots include diet/soil-type, host genotype, and immune system as well as microbe-microbe interactions. Here we show that there is no overlap of abundant bacterial taxa between the microbiotas of the mammalian gut and plant roots, whereas taxa overlap does exist between fish gut and plant root communities. A comparison of root and gut microbiota composition in multiple host species belonging to the same evolutionary lineage reveals host phylogenetic signals in both eukaryotic kingdoms. The reasons underlying striking differences in microbiota composition in independently evolved, yet functionally related, organs in plants and animals remain unclear but might include differences in start inoculum and niche-specific factors such as oxygen levels, temperature, pH, and organic carbon availability
    corecore