8,077 research outputs found
Symmetry as a sufficient condition for a finite flex
We show that if the joints of a bar and joint framework are
positioned as `generically' as possible subject to given symmetry constraints
and possesses a `fully-symmetric' infinitesimal flex (i.e., the
velocity vectors of the infinitesimal flex remain unaltered under all symmetry
operations of ), then also possesses a finite flex which
preserves the symmetry of throughout the path. This and other related
results are obtained by symmetrizing techniques described by L. Asimov and B.
Roth in their paper `The Rigidity Of Graphs' from 1978 and by using the fact
that the rigidity matrix of a symmetric framework can be transformed into a
block-diagonalized form by means of group representation theory. The finite
flexes that can be detected with these symmetry-based methods can in general
not be found with the analogous non-symmetric methods.Comment: 26 pages, 10 figure
Course of neuromyelitis optica during inadvertent pregnancy in a patient treated with rituximab
In neuromyelitis optica (NMO), the monoclonal B-cell antibody rituximab is a therapeutic option. Little is known about the course of NMO and the safety of rituximab during pregnancy. In this study, we report the clinical course of a patient with NMO after application of rituximab 1 week before inadvertent conception. Mother and child did not experience any adverse event, and the postpartum development of the baby was completely normal up to 15 months. Clinical course of NMO was stable during the entire pregnancy. This case illustrates a favorable outcome in a pregnant NMO patient and her child after therapy with rituximab
Effects of the Zanzibar School-Based Deworming Program on Iron Status of Children.
We evaluated the effects of the Zanzibar school-based deworming program on the iron status of primary school children. Parasitologic and nutritional assessments were carried out at baseline, 6 mo, and 12 mo in 4 nonprogram schools (n = 1002), 4 schools in which students received twice-yearly deworming (n = 952), and 4 schools in which students received thrice-yearly deworming (n = 970) with 500 mg generic mebendazole. Schools were randomly selected for evaluation and allocated to program groups. Relative to no treatment, thrice-yearly deworming caused significant decreases in protoporphyrin concentrations and both deworming regimens caused marginally significant increases in serum ferritin concentrations. The average annual changes in protoporphyrin concentrations were -5.9 and -23.5 micromol/mol heme in the control and thrice-yearly deworming groups, respectively (P < 0.001). The average changes in ferritin concentration were 2.8 and 4.5 microg/L, respectively (P = 0.07). Deworming had no effect on annual hemoglobin change or prevalence of anemia. However, the relative risk of severe anemia (hemoglobin < 70 g/L) was 0.77 (95% confidence limits: 0.39, 1.51) in the twice-yearly deworming group and 0.45 (0.19, 1.08) in the thrice-yearly deworming group. The effects on prevalence of high protoporphyrin values and incidence of moderate-to-severe anemia (hemoglobin < 90 g/L) were significantly greater in children with > 2000 hookworm eggs/g feces at baseline. We estimate that this deworming program prevented 1260 cases of moderate-to-severe anemia and 276 cases of severe anemia in a population of 30,000 schoolchildren in 1 y. Where hookworm is heavily endemic, deworming programs can improve iron status and prevent moderate and severe anemia, but deworming may be needed at least twice yearly
Neural Deformable Cone Beam CT
In oral and maxillofacial cone beam computed tomography (CBCT), patient motion is frequently observed and, if not accounted
for, can severely affect the usability of the acquired images. We propose a highly flexible, data driven motion correction and
reconstruction method which combines neural inverse rendering in a CBCT setting with a neural deformation field. We jointly
optimize a lightweight coordinate based representation of the 3D volume together with a deformation network. This allows our
method to generate high quality results while accurately representing occurring patient movements, such as head movements,
separate jaw movements or swallowing. We evaluate our method in synthetic and clinical scenarios and are able to produce
artefact-free reconstructions even in the presence of severe motion. While our approach is primarily developed for maxillofacial
applications, we do not restrict the deformation field to certain kinds of motion. We demonstrate its flexibility by applying it to
other scenarios, such as 4D lung scans or industrial tomography settings, achieving state-of-the art results within minutes with
only minimal adjustments
The orbit rigidity matrix of a symmetric framework
A number of recent papers have studied when symmetry causes frameworks on a
graph to become infinitesimally flexible, or stressed, and when it has no
impact. A number of other recent papers have studied special classes of
frameworks on generically rigid graphs which are finite mechanisms. Here we
introduce a new tool, the orbit matrix, which connects these two areas and
provides a matrix representation for fully symmetric infinitesimal flexes, and
fully symmetric stresses of symmetric frameworks. The orbit matrix is a true
analog of the standard rigidity matrix for general frameworks, and its analysis
gives important insights into questions about the flexibility and rigidity of
classes of symmetric frameworks, in all dimensions.
With this narrower focus on fully symmetric infinitesimal motions, comes the
power to predict symmetry-preserving finite mechanisms - giving a simplified
analysis which covers a wide range of the known mechanisms, and generalizes the
classes of known mechanisms. This initial exploration of the properties of the
orbit matrix also opens up a number of new questions and possible extensions of
the previous results, including transfer of symmetry based results from
Euclidean space to spherical, hyperbolic, and some other metrics with shared
symmetry groups and underlying projective geometry.Comment: 41 pages, 12 figure
The omnivorous Tyrolean Iceman: colon contents (meat, cereals, pollen, moss and whipworm) and stable isotope analyses
The contents of the colon of the Tyrolean Iceman who lived Ga. 5300 years ago include muscle fibres, cereal remains, a diversity of pollen, and most notably that of the hop hornbeam (Ostrya carpinifolia) retaining cellular contents, as well as a moss leaf (Neckera complanata) and eggs of the parasitic whipworm (Trichuris trichiura). Based almost solely on stable isotope analyses and ignoring the work on the colon contents, two recently published papers on the Iceman's diet draw ill- founded conclusions about vegetarianism and even veganism. Neither the pollen nor the moss is likely to have been deliberately consumed as food by the Iceman. All the available evidence concerning the Iceman's broad-based diet is reviewed and the significance of the colon contents for matters other than assessment of food intake is outlined
Nuclear effects in at small in deep inelastic scattering on Li and He
We suggest to use polarized nuclear targets of Li and He to study
nuclear effects in the spin dependent structure functions .
These effects are expected to be enhanced by a factor of two as compared to the
unpolarized targets.
We predict a significant dependence at of due to nuclear shadowing and nuclear
enhancement. The effect of nuclear shadowing at is of an
order of 16% for and 10% for
. By imposing the requirement that
the Bjorken sum rule is satisfied we model the effect of enhancement.
We find the effect of enhancement at to be of an
order of for and
for , if enhancement
occupies the region (). We predict
a 2% effect in the difference of the scattering cross sections of deep
inelastic scattering of an unpolarized projectile off Li with =3/2
and =1/2. We also show explicitly that the many-nucleon description of
deep inelastic scattering off Li becomes invalid in the enhancement region
.Comment: 29 pages, 5 figures, RevTe
- …