18,112 research outputs found

    Differential Emission Measure Determination of Collisionally Ionized Plasma: II. Application to Hot Stars

    Full text link
    In a previous paper we have described a technique to derive constraints on the differential emission measure (DEM) distribution, a measure of the temperature distribution, of collisionally ionized hot plasmas from their X-ray emission line spectra. We apply this technique to the Chandra/HETG spectra of all of the nine hot stars available to us at the time this project was initiated. We find that DEM distributions of six of the seven O stars in our sample are very similar but that theta Ori has an X-ray spectrum characterized by higher temperatures. The DEM distributions of both of B stars in our sample have lower magnitudes than those of the O stars and one, tau Sco, is characterized by higher temperatures than the other, beta Cru. These results confirm previous work in which high temperatures have been found for theta Ori and tau Sco and taken as evidence for channeling of the wind in magnetic fields, the existence of which are related to the stars' youth. Our results demonstrate the utility of our method for deriving temperature information for large samples of X-ray emission line spectra.Comment: The contents of this paper were formerly part of astro-ph/0403603 which was split into two paper

    Ferrimagnetic mixed-spin ladders in weak and strong coupling limits

    Full text link
    We study two similar spin ladder systems with the ferromagnetic leg coupling. First model includes two sorts of spins, s= 1/2 and s= 1, and the second model comprises only s=1/2 legs coupled by a "triangular" rung exchange. The antiferromagnetic (AF) rung coupling destroys the long-range order and eventually makes the systems equivalent to the AF s=1/2 Heisenberg chain. We investigate the situation by different methods in weak and strong rung coupling limits. Particularly we compare the spin-wave theory and the bosonization method in the weak coupling regime of the second model. We analyze the spectra and correlations, and discuss the order parameter of these ladder systems.Comment: 12 pages, 4 figure

    New spectral classification technique for X-ray sources: quantile analysis

    Full text link
    We present a new technique called "quantile analysis" to classify spectral properties of X-ray sources with limited statistics. The quantile analysis is superior to the conventional approaches such as X-ray hardness ratio or X-ray color analysis to study relatively faint sources or to investigate a certain phase or state of a source in detail, where poor statistics does not allow spectral fitting using a model. Instead of working with predetermined energy bands, we determine the energy values that divide the detected photons into predetermined fractions of the total counts such as median (50%), tercile (33% & 67%), and quartile (25% & 75%). We use these quantiles as an indicator of the X-ray hardness or color of the source. We show that the median is an improved substitute for the conventional X-ray hardness ratio. The median and other quantiles form a phase space, similar to the conventional X-ray color-color diagrams. The quantile-based phase space is more evenly sensitive over various spectral shapes than the conventional color-color diagrams, and it is naturally arranged to properly represent the statistical similarity of various spectral shapes. We demonstrate the new technique in the 0.3-8 keV energy range using Chandra ACIS-S detector response function and a typical aperture photometry involving background subtraction. The technique can be applied in any energy band, provided the energy distribution of photons can be obtained.Comment: 11 pages, 9 figures, accepted for publication in Ap

    Dynamical Ne K Edge and Line Variations in the X-Ray Spectrum of the Ultra-compact Binary 4U 0614+091

    Get PDF
    We observed the ultra-compact binary candidate 4U 0614+091 for a total of 200 ksec with the high-energy transmission gratings onboard the \chandra X-ray Observatory. The source is found at various intensity levels with spectral variations present. X-ray luminosities vary between 2.0×1036\times10^{36} \ergsec and 3.5×1036\times10^{36} \ergsec. Continuum variations are present at all times and spectra can be well fit with a powerlaw component, a high kT blackbody component, and a broad line component near oxygen. The spectra require adjustments to the Ne K edge and in some occasions also to the Mg K edge. The Ne K edge appears variable in terms of optical depths and morphology. The edge reveals average blue- and red-shifted values implying Doppler velocities of the order of 3500 \kms. The data show that Ne K exhibits excess column densities of up to several 1018^{18} cm2^{-2}. The variability proves that the excess is intrinsic to the source. The correponding disk velocities also imply an outer disk radius of the order of <109< 10^9 cm consistent with an ultra-compact binary nature. We also detect a prominent soft emission line complex near the \oviii Lα\alpha position which appears extremely broad and relativistic effects from near the innermost disk have to be included. Gravitationally broadened line fits also provide nearly edge-on angles of inclination between 86 and 89^{\circ}. The emissions appear consistent with an ionized disk with ionization parameters of the order of 104^4 at radii of a few 107^7 cm. The line wavelengths with respect to \oviiia\ are found variably blue-shifted indicating more complex inner disk dynamics.Comment: 24 pages, 8 figures, submitted to the Astrophyscial Main Journa

    Radial distribution of gas and dust in spiral galaxies: The case of M 99 (NGC 4254) and M 100 (NGC 4321)

    Get PDF
    By combining Herschel-SPIRE data with archival Spitzer, H i , and CO maps, we investigate the spatial distribution of gas and dust in the two famous grand-design spirals M 99 and M 100 in the Virgo cluster. Thanks to the unique resolution and sensitivity of the Herschel-SPIRE photometer, we are for the first time able to measure the distribution and extent of cool, submillimetre (submm)-emitting dust inside and beyond the optical radius. We compare this with the radial variation in both the gas mass and the metallicity. Although we adopt a model-independent, phenomenological approach, our analysis provides important insights. We find the dust extending to at least the optical radius of the galaxy and showing breaks in its radial profiles at similar positions as the stellar distribution. The colour indices f350/f500 and f250/f350 decrease radially consistent with the temperature decreasing with radius. We also find evidence of an increasing gas to dust ratio with radius in the outer regions of both galaxies

    Global dust model intercomparison in AeroCom phase I

    Get PDF
    This study presents the results of a broad intercomparison of a total of 15 global aerosol models within the AeroCom project. Each model is compared to observations related to desert dust aerosols, their direct radiative effect, and their impact on the biogeochemical cycle, i.e., aerosol optical depth (AOD) and dust deposition. Additional comparisons to Angström exponent (AE), coarse mode AOD and dust surface concentrations are included to extend the assessment of model performance and to identify common biases present in models. These data comprise a benchmark dataset that is proposed for model inspection and future dust model development. There are large differences among the global models that simulate the dust cycle and its impact on climate. In general, models simulate the climatology of vertically integrated parameters (AOD and AE) within a factor of two whereas the total deposition and surface concentration are reproduced within a factor of 10. In addition, smaller mean normalized bias and root mean square errors are obtained for the climatology of AOD and AE than for total deposition and surface concentration. Characteristics of the datasets used and their uncertainties may influence these differences. Large uncertainties still exist with respect to the deposition fluxes in the southern oceans. Further measurements and model studies are necessary to assess the general model performance to reproduce dust deposition in ocean regions sensible to iron contributions. Models overestimate the wet deposition in regions dominated by dry deposition. They generally simulate more realistic surface concentration at stations downwind of the main sources than at remote ones. Most models simulate the gradient in AOD and AE between the different dusty regions. However the seasonality and magnitude of both variables is better simulated at African stations than Middle East ones. The models simulate the offshore transport of West Africa throughout the year but they overestimate the AOD and they transport too fine particles. The models also reproduce the dust transport across the Atlantic in the summer in terms of both AOD and AE but not so well in winter-spring nor the southward displacement of the dust cloud that is responsible of the dust transport into South America. Based on the dependency of AOD on aerosol burden and size distribution we use model bias with respect to AOD and AE to infer the bias of the dust emissions in Africa and the Middle East. According to this analysis we suggest that a range of possible emissions for North Africa is 400 to 2200 Tg yr-1 and in the Middle East 26 to 526 Tg yr-1

    Current reversal and exclusion processes with history-dependent random walks

    Get PDF
    A class of exclusion processes in which particles perform history-dependent random walks is introduced, stimulated by dynamic phenomena in some biological and artificial systems. The particles locally interact with the underlying substrate by breaking and reforming lattice bonds. We determine the steady-state current on a ring, and find current-reversal as a function of particle density. This phenomenon is attributed to the non-local interaction between the walkers through their trails, which originates from strong correlations between the dynamics of the particles and the lattice. We rationalize our findings within an effective description in terms of quasi-particles which we call front barriers. Our analytical results are complemented by stochastic simulations.Comment: 5 pages, 6 figure

    The central region of spiral galaxies as seen by Herschel: M 81, M 99, and M 100

    Get PDF
    With appropriate spatial resolution, images of spiral galaxies in thermal infrared (~10 μm and beyond) often reveal a bright central component, distinct from the stellar bulge, superimposed on a disk with prominent spiral arms. ISO and Spitzer studies have shown that much of the scatter in the mid-infrared colors of spiral galaxies is related to changes in the relative importance of these two components, rather than to other modifications, such as the morphological type or star formation rate, that affect the properties of the galaxy as a whole. With the Herschel imaging capability from 70 to 500 μm, we revisit this two-component approach at longer wavelengths, to see if it still provides a working description of the brightness distribution of galaxies, and to determine its implications on the interpretation of global far-infrared properties of galaxies. We quantify the luminosity of the central component by both a decomposition of the radial surface brightness profile and a direct extraction in 2D. We find the central component contribution is variable within the three galaxies in our sample, possibly connected more directly to the presence of a bar than to the morphological type. The central component’s relative contribution is at its maximum in the mid-infrared range and drops around 160 μm to reach a constant value beyond 200 μm. The central component contains a greater fraction of hot dust than the disk component, and while the colors of the central components are scattered, colors of the disk components are more homogenous from one galaxy to the next

    Electron spin relaxation in organic semiconductors probed through muSR

    Full text link
    Muon spin spectroscopy and in particular the avoided level crossing technique is introduced, with the aim of showing it as a very sensitive local probe for electron spin relaxation in organic semiconductors. Avoided level crossing data on TMS-pentacene at different temperatures are presented, and they are analysed to extract the electron spin relaxation rate, that is shown to increase on increasing the temperature from 0.02 MHz to 0.33 MHz at 3 K and 300 K respectively.Comment: International Conference TSN2010 "Trends in spintronics and nanomagnetism

    On the metal-insulator transition in the two-chain model of correlated fermions

    Full text link
    The doping-induced metal-insulator transition in two-chain systems of correlated fermions is studied using a solvable limit of the t-J model and the fact that various strong- and weak-coupling limits of the two-chain model are in the same phase, i.e. have the same low-energy properties. It is shown that the Luttinger-liquid parameter K_\rho takes the universal value unity as the insulating state (half-filling) is approached, implying dominant d-type superconducting fluctuations, independently of the interaction strength. The crossover to insulating behavior of correlations as the transition is approached is discussed.Comment: 7 pages, 1 figur
    corecore