2,802 research outputs found

    CosMIC: a consistent metric for spike inference from calcium imaging

    Get PDF
    In recent years, the development of algorithms to detect neuronal spiking activity from two-photon calcium imaging data has received much attention. Meanwhile, few researchers have examined the metrics used to assess the similarity of detected spike trains with the ground truth. We highlight the limitations of the two most commonly used metrics, the spike train correlation and success rate, and propose an alternative, which we refer to as CosMIC. Rather than operating on the true and estimated spike trains directly, the proposed metric assesses the similarity of the pulse trains obtained from convolution of the spike trains with a smoothing pulse. The pulse width, which is derived from the statistics of the imaging data, reflects the temporal tolerance of the metric. The final metric score is the size of the commonalities of the pulse trains as a fraction of their average size. Viewed through the lens of set theory, CosMIC resembles a continuous Sørensen-Dice coefficient — an index commonly used to assess the similarity of discrete, presence/absence data. We demonstrate the ability of the proposed metric to discriminate the precision and recall of spike train estimates. Unlike the spike train correlation, which appears to reward overestimation, the proposed metric score is maximised when the correct number of spikes have been detected. Furthermore, we show that CosMIC is more sensitive to the temporal precision of estimates than the success rate

    Mechanical ventilation using non-injurious ventilation settings causes lung injury in the absence of pre-existing lung injury in healthy mice

    Get PDF
    INTRODUCTION: Mechanical ventilation (MV) may cause ventilator-induced lung injury (VILI). Present models of VILI use exceptionally large tidal volumes, causing gross lung injury and haemodynamic shock. In addition, animals are ventilated for a relative short period of time and only after a 'priming' pulmonary insult. Finally, it is uncertain whether metabolic acidosis, which frequently develops in models of VILI, should be prevented. To study VILI in healthy mice, the authors used a MV model with clinically relevant ventilator settings, avoiding massive damage of lung structures and shock, and preventing metabolic acidosis. METHODS: Healthy C57Bl/6 mice (n = 66) or BALB/c mice (n = 66) were ventilated (tidal volume = 7.5 ml/kg or 15 ml/kg; positive end-expiratory pressure = 2 cmH2O; fraction of inspired oxygen = 0.5) for five hours. Normal saline or sodium bicarbonate were used to correct for hypovolaemia. Lung histopathology, lung wet-to-dry ratio, bronchoalveolar lavage fluid protein content, neutrophil influx and levels of proinflammatory cytokines and coagulation factors were measured. RESULTS: Animals remained haemodynamically stable throughout the whole experiment. Lung histopathological changes were minor, although significantly more histopathological changes were found after five hours of MV with a larger tidal volume. Lung histopathological changes were no different between the strains. In both strains and with both ventilator settings, MV caused higher wet-to-dry ratios, higher bronchoalveolar lavage fluid protein levels and more influx of neutrophils, and higher levels of proinflammatory cytokines and coagulation factors. Also, with MV higher systemic levels of cytokines were measured. All parameters were higher with larger tidal volumes. Correcting for metabolic acidosis did not alter endpoints. CONCLUSIONS: MV induces VILI, in the absence of a priming pulmonary insult and even with use of relevant (least injurious) ventilator settings. This model offers opportunities to study the pathophysiological mechanisms behind VILI and the contribution of MV to lung injury in the absence of pre-existing lung injury

    Early intravenous unfractionated heparin and outcome in acute lung injury and acute respiratory distress syndrome: a retrospective propensity matched cohort study.

    Get PDF
    RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.BACKGROUND: Acute lung injury (ALI) is characterized by a pro-coagulant state. Heparin is an anticoagulant with anti-inflammatory properties. Unfractionated heparin has been found to be protective in experimental models of ALI. We hypothesized that an intravenous therapeutic dose of unfractionated heparin would favorably influence outcome of critically ill patients diagnosed with ALI. METHODS: Patients admitted to the Intensive Care Unit (ICU) of a tertiary referral center in the Netherlands between November 2004 and October 2007 were screened. Patients who developed ALI (consensus definition) were included. In this cohort, the impact of heparin use on mortality was assessed by logistic regression analysis in a propensity matched case-control design. RESULTS: Of 5,561 admitted patients, 2,138 patients had a length of stay > 48 hours, of whom 723 were diagnosed with ALI (34%), of whom 164 received intravenous heparin. In a propensity score adjusted logistic regression analysis, heparin use did not influence 28-day mortality (odds ratio 1.23 [confidence interval 95% 0.80-1.89], nor did it affect ICU length of stay. CONCLUSIONS: Administration of therapeutic doses of intravenous unfractionated heparin was not associated with reduced mortality in critically ill patients diagnosed with ALI. Heparin treatment did not increase transfusion requirements. These results may help in the design of prospective trials evaluating the use of heparin as adjunctive treatment for ALI

    The Dynamics of the Pulmonary Microbiome During Mechanical Ventilation in the Intensive Care Unit and the Association with Occurrence of Pneumonia

    Get PDF
    RATIONALE: Ventilator-associated pneumonia (VAP) is the most common nosocomial infections in patients admitted to the ICU. The adapted island model predicts several changes in the respiratory microbiome during intubation and mechanical ventilation. OBJECTIVES: We hypothesised that mechanical ventilation and antibiotic administration decrease the diversity of the respiratory microbiome and that these changes are more profound in patients who develop VAP. METHODS: Intubated and mechanically ventilated ICU-patients were included. Tracheal aspirates were obtained three times a week. 16S rRNA gene sequencing with the Roche 454 platform was used to measure the composition of the respiratory microbiome. Associations were tested with linear mixed model analysis and principal coordinate analysis. MEASUREMENTS AND MAIN RESULTS: 111 tracheal aspirates were obtained from 35 patients; 11 had VAP, 18 did not have VAP. Six additional patients developed pneumonia within the first 48 hours after intubation. Duration of mechanical ventilation was associated with a decrease in α diversity (Shannon index; fixed-effect regression coefficient (β): -0.03 (95% CI -0.05 to -0.005)), but the administration of antibiotic therapy was not (fixed-effect β: 0.06; 95% CI -0.17 to 0.30). There was a significant difference in change of β diversity between patients who developed VAP and control patients for Bray-Curtis distances (p=0.03) and for Manhattan distances (p=0.04). Burkholderia, Bacillales and, to a lesser extent, Pseudomonadales positively correlated with the change in β diversity. CONCLUSION: Mechanical ventilation, but not antibiotic administration, was associated with changes in the respiratory microbiome. Dysbiosis of microbial communities in the respiratory tract was most profound in patients who developed VAP.info:eu-repo/semantics/publishedVersio

    Soluble urokinase-type plasminogen activator receptor levels in patients with burn injuries and inhalation trauma requiring mechanical ventilation: an observational cohort study

    Get PDF
    Soluble urokinase-type plasminogen activator receptor (suPAR) has been proposed as a biologic marker of fibrinolysis and inflammation. The aim of this study was to investigate the diagnostic and prognostic value of systemic and pulmonary levels of suPAR in burn patients with inhalation trauma who need mechanical ventilation. suPAR was measured in plasma and nondirected lung-lavage fluid of mechanically ventilated burn patients with inhalation trauma. The samples were obtained on the day of inhalation trauma and on alternate days thereafter until patients were completely weaned from the mechanical ventilator. Mechanically ventilated patients without burns and without pulmonary disease served as controls. Systemic levels of suPAR in burn patients with inhalation trauma were not different from those in control patients. On admission and follow up, pulmonary levels of suPAR in patients with inhalation trauma were significantly higher compared with controls. Pulmonary levels of suPAR highly correlated with pulmonary levels of interleukin 6, a marker of inflammation, and thrombin-antithrombin complexes, markers of coagulation, but not plasminogen activator activity, a marker of fibrinolysis. Systemic levels of suPAR were predictive of the duration of mechanical ventilation and length of intensive care unit (ICU) stay. Duration of mechanical ventilation and length of ICU stay were significantly longer in burn-injury patients with systemic suPAR levels > 9.5 ng/ml. Pulmonary levels of suPAR are elevated in burn patients with inhalation trauma, and they correlate with pulmonary inflammation and coagulation. Although pulmonary levels of suPAR may have diagnostic value in burn-injury patients, systemic levels of suPAR have prognostic valu

    Midday measurements of leaf water potential and stomatal conductance are highly correlated with daily water use of Thompson Seedless grapevines

    Get PDF
    A study was conducted to determine the relationship between midday measurements of vine water status and daily water use of grapevines measured with a weighing lysimeter. Water applications to the vines were terminated on August 24th for 9 days and again on September 14th for 22 days. Daily water use of the vines in the lysimeter (ETLYS) was approximately 40 L vine−1 (5.3 mm) prior to turning the pump off, and it decreased to 22.3 L vine−1 by September 2nd. Pre-dawn leaf water potential (ΨPD) and midday Ψl on August 24th were −0.075 and −0.76 MPa, respectively, with midday Ψl decreasing to −1.28 MPa on September 2nd. Leaf g s decreased from ~500 to ~200 mmol m−2 s−1 during the two dry-down periods. Midday measurements of g s and Ψl were significantly correlated with one another (r = 0.96) and both with ETLYS/ETo (r = ~0.9). The decreases in Ψl, g s, and ETLYS/ETo in this study were also a linear function of the decrease in volumetric soil water content. The results indicate that even modest water stress can greatly reduce grapevine water use and that short-term measures of vine water status taken at midday are a reflection of daily grapevine water us

    The Mechanisms of Codon Reassignments in Mitochondrial Genetic Codes

    Get PDF
    Many cases of non-standard genetic codes are known in mitochondrial genomes. We carry out analysis of phylogeny and codon usage of organisms for which the complete mitochondrial genome is available, and we determine the most likely mechanism for codon reassignment in each case. Reassignment events can be classified according to the gain-loss framework. The gain represents the appearance of a new tRNA for the reassigned codon or the change of an existing tRNA such that it gains the ability to pair with the codon. The loss represents the deletion of a tRNA or the change in a tRNA so that it no longer translates the codon. One possible mechanism is Codon Disappearance, where the codon disappears from the genome prior to the gain and loss events. In the alternative mechanisms the codon does not disappear. In the Unassigned Codon mechanism, the loss occurs first, whereas in the Ambiguous Intermediate mechanism, the gain occurs first. Codon usage analysis gives clear evidence of cases where the codon disappeared at the point of the reassignment and also cases where it did not disappear. Codon disappearance is the probable explanation for stop to sense reassignments and a small number of reassignments of sense codons. However, the majority of sense to sense reassignments cannot be explained by codon disappearance. In the latter cases, by analysis of the presence or absence of tRNAs in the genome and of the changes in tRNA sequences, it is sometimes possible to distinguish between the Unassigned Codon and Ambiguous Intermediate mechanisms. We emphasize that not all reassignments follow the same scenario and that it is necessary to consider the details of each case carefully.Comment: 53 pages (45 pages, including 4 figures + 8 pages of supplementary information). To appear in J.Mol.Evo

    Neopterin and procalcitonin are suitable biomarkers for exclusion of severe Plasmodium falciparum disease at the initial clinical assessment of travellers with imported malaria

    Get PDF
    Background. Most clinicians in developed, non-malaria endemic countries have limited or no experience in making clinical assessments of malaria disease severity and subsequent decisions regarding the need for parenteral therapy or high-level monitoring in febrile patients with imported malaria. In the present study, the diagnostic accuracy of plasma soluble Triggering Receptor Expressed on Myeloid cells 1 (TREM-1), neopterin and procalcitonin levels as biomarkers for severe Plasmodium falciparum disease was evaluated in 104 travellers with imported malaria (26 patients with non-P. falciparum malaria, 64 patients with uncomplicated P. falciparum malaria and 14 patients with severe P. falciparum malaria). Methods. TREM-1, neopterin and procalcitonin were determined in serum using commercially available ELISA or EIA tests. The diagnostic performance of these biomarkers for severe disease was compared with plasma lactate, a well-validated parameter for disease severity in patients with malaria, as reference. Severe malaria was defined according to the modified WHO criteria. Results. No significant differences in TREM-1 levels were detected between the different patient groups. Patients with severe P. falciparum malaria had significantly higher neopterin and procalcitonin levels on admission when compared to patients with uncomplicated P. falciparum malaria or non-P. falciparum malaria. Receiver Operating Characteristic (ROC) curve analysis showed that neopterin had the highest Area-Under-the-ROC curve (AUROC 0.85) compared with plasma lactate (AUROC 0.80) and procalcitonin (AUROC 0.78). At a cut-off point of 10.0 ng/ml, neopterin had a positive and negative predictive value of 0.38 and 0.98 whereas procalcitonin, at a cut-off point of 0.9 ng/ml, had a positive and negative predictive value of 0.30 and 1.00. Conclusion. Although the diagnostic value of neopterin and procalcitonin is limited, the high negative predictive value of both neopterin and procalcitonin may be helpful for a rapid exclusion of severe malaria disease on admission. This may be a valuable tool for physicians only occasionally dealing with ill-returned travellers from malaria-endemic regions and who need to decide on subsequent oral anti-malarial treatment or timely referral to a specialized centre for high-level monitoring and intensified parenteral treatment
    corecore