356 research outputs found

    Systematic study of d-wave superconductivity in the 2D repulsive Hubbard model

    Full text link
    The cluster size dependence of superconductivity in the conventional two-dimensional Hubbard model, commonly believed to describe high-temperature superconductors, is systematically studied using the Dynamical Cluster Approximation and Quantum Monte Carlo simulations as cluster solver. Due to the non-locality of the d-wave superconducting order parameter, the results on small clusters show large size and geometry effects. In large enough clusters, the results are independent of the cluster size and display a finite temperature instability to d-wave superconductivity.Comment: 4 pages, 3 figures; updated with version published in PRL; added values of Tc obtained from fit

    Monte Carlo simulations of Rb2MnF4{\rm Rb_2MnF_4}, a classical Heisenberg antiferromagnet in two-dimensions with dipolar interaction

    Full text link
    We study the phase diagram of a quasi-two dimensional magnetic system Rb2MnF4{\rm Rb_2MnF_4} with Monte Carlo simulations of a classical Heisenberg spin Hamiltonian which includes the dipolar interactions between Mn2+{\rm Mn}^{2+} spins. Our simulations reveal an Ising-like antiferromagnetic phase at low magnetic fields and an XY phase at high magnetic fields. The boundary between Ising and XY phases is analyzed with a recently proposed finite size scaling technique and found to be consistent with a bicritical point at T=0. We discuss the computational techniques used to handle the weak dipolar interaction and the difference between our phase diagram and the experimental results.Comment: 13 pages 18 figure

    A Comparative Study on Representativeness and Stochastic Efficacy of Miniature Tensile Specimen Testing

    Get PDF
    In this article, a miniature dog bone tensile coupon design was tested against the existing ASTM standard specimen design. Specimens were prepared from commercially sourced austenitic stainless steel 304 alloy, and a defect-ridden additively manufactured 304L alloy was studied. By utilizing a tensile specimen design that is 1/230th volume of the smallest ASTM E8-04 (2016), Standard Test Methods for Tension Testing of Metallic Materials, dog bone specimen, coupled to a digital image correlation (DIC) setup, case studies were performed to compare tensile property measurements and strain field evolution. Whereas yield strength measurements were observed to be similar, post-yield, the ultimate strength measurements and ductility measurements from the miniature specimens were observed to be higher than the ASTM specimen design. Although the strength measurements were comparable, the strain evolution was found to differ in the miniature specimens. Studies to assess effects of varying thickness and defect population were also pursued on the miniature tensile specimen. From the DIC strain field estimations, the peak local strain values at ultimate tensile strength were observed to be increasing with reducing specimen thickness. Testing of defect ridden stainless steel revealed the sensitivity to failure through strain localization and the influence of defect size was captured in the strength measurements

    Mott Transition of MnO under Pressure: Comparison of Correlated Band Theories

    Full text link
    The electronic structure, magnetic moment, and volume collapse of MnO under pressure are obtained from four different correlated band theory methods; local density approximation + Hubbard U (LDA+U), pseudopotential self-interaction correction (pseudo-SIC), the hybrid functional (combined local exchange plus Hartree-Fock exchange), and the local spin density SIC (SIC-LSD) method. Each method treats correlation among the five Mn 3d orbitals (per spin), including their hybridization with three O 2p2p orbitals in the valence bands and their changes with pressure. The focus is on comparison of the methods for rocksalt MnO (neglecting the observed transition to the NiAs structure in the 90-100 GPa range). Each method predicts a first-order volume collapse, but with variation in the predicted volume and critical pressure. Accompanying the volume collapse is a moment collapse, which for all methods is from high-spin to low-spin (5/2 to 1/2), not to nonmagnetic as the simplest scenario would have. The specific manner in which the transition occurs varies considerably among the methods: pseudo-SIC and SIC-LSD give insulator-to-metal, while LDA+U gives insulator-to-insulator and the hybrid method gives an insulator-to-semimetal transition. Projected densities of states above and below the transition are presented for each of the methods and used to analyze the character of each transition. In some cases the rhombohedral symmetry of the antiferromagnetically ordered phase clearly influences the character of the transition.Comment: 14 pages, 9 figures. A 7 institute collaboration, Updated versio

    Longitudinal increase in the detection rate of Mycobacterium chimaera in heater-cooler device-derived water samples

    Full text link
    Colonization with Mycobacterium chimaera and other nontuberculous mycobacteria (NTM) has been reported for heater-cooler devices (HCD) produced by several manufacturers. Up to now, exclusively LivaNova (London, UK) HCDs have been associated with M. chimaera infections after cardiac surgery. The vast majority of studies on HCD colonization were cross-sectional. We were interested in longitudinal dynamics of mycobacterial growth in HCD water samples and analyzed data of a prospective mycobacterial surveillance of five LivaNova 3T HCDs. Nontuberculous mycobacteria were isolated in 319 (48.0%, 21 water samples grew more than one mycobacterial species) of a total of 665 water samples. The most frequently detected species were M. chimaera (N= 247/319, 77.4%), Mycobacterium gordonae (46/319, 14.4%) and Mycobacterium paragordonae (34/319, 10.7%). Detection rates increased longitudinally for any NTM (odds ratio (OR) per year in use: 1.60, 95% CI 1.17-2.24, P<0.001) and for M. chimaera (OR per year in use: 1.67, 95% CI 1.11-2.57, P<0.01)

    In-plane magnetic reorientation in coupled ferro- and antiferromagnetic thin films

    Full text link
    By studying coupled ferro- (FM) and antiferromagnetic (AFM) thin film systems, we obtain an in-plane magnetic reorientation as a function of temperature and FM film thickness. The interlayer exchange coupling causes a uniaxial anisotropy, which may compete with the intrinsic anisotropy of the FM film. Depending on the latter the total in-plane anisotropy of the FM film is either enhanced or reduced. Eventually a change of sign occurs, resulting in an in-plane magnetic reorientation between a collinear and an orthogonal magnetic arrangement of the two subsystems. A canted magnetic arrangement may occur, mediating between these two extremes. By measuring the anisotropy below and above the N\'eel temperature the interlayer exchange coupling can be determined. The calculations have been performed with a Heisenberg-like Hamiltonian by application of a two-spin mean-field theory.Comment: 4 pages, 4 figure

    An overview of a systems model of cassava and cassava pests in Africa

    Get PDF
    A systems model is described for cassava, Manihot esculenta Crantz, two of its introduced herbivores, the cassava green mite (CGM), Mononychellus tanajoa (Bondar), sensu lato, and the cassava mealybug (CM), Phenacoccus manihoti Mat.-Ferr., the introduced CM parasitoid, Epidinocarsis lopezi (DeSantis) and coccinellid predator of the genus Hyperaspis. The systems model includes the effects of weather, soil nitrogen and water levels on the interactions of the system's components. The model simulates the distribution of developmental times of cohorts initated at the same time, as well as the number and biomass (energy) dynamics of all populations over time. Biomass acquisition and allocation at the population and organism subunit levels (e.g. leaves, fruit, ova) were also simulated. A common acquisition (i.e. functional response) submodel was used to estimate daily photosynthetic as well as nitrogen and water uptake rates in cassava, in addition to herbivory, parasitism and predation rates for the arthropod species. This paper presents an overview of the systems model. Simulation results for the plant under pest free conditions were compared to field data. In addition, the model was used to estimate tuber yield losses due to CM and CGM feeding, and to examine the beneficial effects of introduced CM natural enemies as measured by reductions in tuber yield losse

    Impact of different image reconstructions on PET quantification in non-small cell lung cancer: a comparison of adenocarcinoma and squamous cell carcinoma

    Full text link
    OBJECTIVE: Positron emission tomography (PET) using 18F-fluordeoxyglucose (F-FDG) is an established imaging modality for tumor staging in patients with non-small cell lung cancer (NSCLC). There is a growing interest in using F-FDG PET for therapy response assessment in NSCLC which relies on quantitative PET parameters such as standardized uptake values (SUV). Different reconstruction algorithms in PET may affect SUV. We sought to determine the variation of SUV in patients with NSCLC when using ordered subset expectation maximization (OSEM) and block sequential regularized expectation maximization (BSREM) in latest-generation digital PET/CT, including a subanalysis for adenocarcinoma and squamous cell carcinoma. METHODS: A total of 58 patients (34 = adenocarcinoma, 24 = squamous cell carcinoma) that underwent a clinically indicated F-FDG PET/CT for staging were reviewed. PET images were reconstructed with OSEM and BSREM reconstruction with noise penalty strength β-levels of 350, 450, 600, 800 and 1200. Lung tumors maximum standardized uptake value (SUV) were compared. RESULTS: Lung tumors SUV were significantly lower in adenocarcinomas compared to squamous cell carcinomas in all reconstructions evaluated (all p 0.05). There was a statistically significant difference of the relative increase of SUV in adenocarcinoma (mean + 34.8%) and squamous cell carcinoma (mean 23.4%), when using BSREM instead of OSEM (p < 0.05). CONCLUSIONS: In NSCLC the relative change of SUV when using BSREM instead of OSEM is significantly higher in adenocarcinoma as compared to squamous cell carcinoma. ADVANCES IN KNOWLEDGE: The impact of BSREM on SUV may vary in different histological subtypes of NSCLC. This highlights the importance for careful standardisation of β-value used for serial F-FDG PET scans when following-up NSCLC patients

    Magnetization relaxation in (Ga,Mn)As ferromagnetic semiconductors

    Get PDF
    We describe a theory of Mn local-moment magnetization relaxation due to p-d kinetic-exchange coupling with the itinerant-spin subsystem in the ferromagnetic semiconductor (Ga,Mn)As alloy. The theoretical Gilbert damping coefficient implied by this mechanism is calculated as a function of Mn moment density, hole concentration, and quasiparticle lifetime. Comparison with experimental ferromagnetic resonance data suggests that in annealed strongly metallic samples, p-d coupling contributes significantly to the damping rate of the magnetization precession at low temperatures. By combining the theoretical Gilbert coefficient with the values of the magnetic anisotropy energy, we estimate that the typical critical current for spin-transfer magnetization switching in all-semiconductor trilayer devices can be as low as ∼105Acm−2\sim 10^{5} {\rm A cm}^{-2}.Comment: 4 pages, 2 figures, submitted to Rapid Communication
    • …
    corecore