1,460 research outputs found
Techniques of flow-charting
Automation of libraries must come about through close cooperation
between librarians and "machine people." Each must understand
something of the other's specialty. For a starter, a good common
language is provided by flow charts, which are simple work- flow
charts written in yes -no terms. They can be quickly understood by
the "machine people," and the technique of making them can be
learned by a librarian in a very short time.published or submitted for publicatio
Parallel waves of inductive signaling and mesenchyme maturation regulate differentiation of the chick mesonephros
AbstractThe mesonephros is a linear kidney that, in chicken embryos, stretches between the axial levels of the 15th to the 30th somites. Mesonephros differentiation proceeds from anterior to posterior and is dependent on signals from the nephric duct, which migrates from anterior to posterior through the mesonephric region. If migration of the nephric duct is blocked, markers of tubule differentiation, including Lhx1 and Wnt4, are not activated posterior to the blockade. However, activation and maintenance of the early mesonephric mesenchyme markers Osr1, Eya1 and Pax2 proceeds normally in an anterior-to-posterior wave, indicating that these genes are not dependent on inductive signals from the duct. The expression of Lhx1 and Wnt4 can be rescued in duct-blocked embryos by supplying a source of canonical Wnt signaling, although epithelial structures are not obtained, suggesting that the duct may express other tubule-inducing signals in addition to Wnts. In the absence of the nephric duct, anterior mesonephric mesenchyme adjacent to somites exhibits greater competence to initiate tubular differentiation in response to Wnt signaling than more posterior mesonephric mesenchyme adjacent to unsegmented paraxial mesoderm. It is proposed that mesonephric tubule differentiation is regulated by two independent parallel waves, one of inductive signaling from the nephric duct and the other of competence of the mesonephric mesenchyme to undergo tubular differentiation, both of which travel from anterior to posterior in parallel with the formation of new somites
Temporal behavior of the inverse spin Hall voltage in a magnetic insulator-nonmagnetic metal structure
It is demonstrated that upon pulsed microwave excitation, the temporal
behavior of a spin-wave induced inverse spin Hall voltage in a magnetic
insulator-nonmagnetic metal structure is distinctly different from the temporal
evolution of the directly excited spin-wave mode from which it originates. The
difference in temporal behavior is attributed to the excitation of long-lived
secondary spin-wave modes localized at the insulator-metal interface
Spin-wave propagation in a microstructured magnonic crystal
Transmission of microwave spin waves through a microstructured magnonic
crystal in the form of a permalloy waveguide of a periodically varying width
was studied experimentally and theoretically. The spin wave characteristics
were measured by spatially-resolved Brillouin light scattering microscopy. A
rejection frequency band was clearly observed. The band gap frequency was
controlled by the applied magnetic field. The measured spin-wave intensity as a
function of frequency and propagation distance is in good agreement with a
model calculation.Comment: 4 pages, 3 figure
Direct observation of domain wall structures in curved permalloy wires containing an antinotch
The formation and field response of head-to-head domain walls in curved permalloy wires, fabricated to contain a single antinotch, have been investigated using Lorentz microscopy. High spatial resolution maps of the vector induction distribution in domain walls close to the antinotch have been derived and compared with micromagnetic simulations. In wires of 10 nm thickness the walls are typically of a modified asymmetric transverse wall type. Their response to applied fields tangential to the wire at the antinotch location was studied. The way the wall structure changes depends on whether the field moves the wall away from or further into the notch. Higher fields are needed and much more distorted wall structures are observed in the latter case, indicating that the antinotch acts as an energy barrier for the domain wal
- …