3 research outputs found

    Translational Research in Cancer Genetics: The Road Less Traveled

    No full text
    Gene discoveries in cancer have the potential for clinical and public health applications. To take advantage of such discoveries, a translational research agenda is needed to take discoveries from the bench to population health impact. To assess the current status of translational research in cancer genetics, we analyzed the extramural grant portfolio of the National Cancer Institute (NCI) from Fiscal Year 2007, as well as the cancer genetic research articles published in 2007. We classified both funded grants and publications as follows: T0 as discovery research; T1 as research to develop a candidate health application (e.g., test or therapy); T2 as research that evaluates a candidate application and develops evidence-based recommendations; T3 as research that assesses how to integrate an evidence-based recommendation into cancer care and prevention; and T4 as research that assesses health outcomes and population impact. We found that 1.8% of the grant portfolio and 0.6% of the published literature was T2 research or beyond. In addition to discovery research in cancer genetics, a translational research infrastructure is urgently needed to methodically evaluate and translate gene discoveries for cancer care and prevention

    Epidemiology of atrial fibrillation in the All of Us Research Program

    No full text
    Background The prevalence, incidence and risk factors of atrial fibrillation (AF) in a large, geographically and ethnically diverse cohort in the United States have not been fully described. Methods We analyzed data from 173,099 participants of the All of Us Research Program recruited in the period 2017-2019, with 92,318 of them having electronic health records (EHR) data available, and 35,483 having completed a medical history survey. Presence of AF at baseline was identified from self-report and EHR records. Incident AF was obtained from EHR. Demographic, anthropometric and clinical risk factors were obtained from questionnaires, baseline physical measurements and EHR. Results At enrollment, mean age was 52 years old (range 18-89). Females and males accounted for 61% and 39% respectively. Non-Hispanic Whites accounted for 67% of participants, with non-Hispanic Blacks, non-Hispanic Asians and Hispanics accounting for 26%, 4% and 3% of participants, respectively. Among 92,318 participants with available EHR data, 3,885 (4.2%) had AF at the time of study enrollment, while the corresponding figure among 35,483 with medical history data was 2,084 (5.9%). During a median follow-up of 16 months, 354 new cases of AF were identified among 88,433 eligible participants. Individuals who were older, male, non-Hispanic white, had higher body mass index, or a prior history of heart failure or coronary heart disease had higher prevalence and incidence of AF. Conclusion The epidemiology of AF in the All of Us Research Program is similar to that reported in smaller studies with careful phenotyping, highlighting the value of this new resource for the study of AF and, potentially, other cardiovascular diseases. © 2022 Public Library of Science. All rights reserved.Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Panorama fiscal de América Latina y el Caribe: Año 2014

    No full text
    The rapid and continuing progress in gene discovery for complex diseases is fuelling interest in the potential application of genetic risk models for clinical and public health practice. The number of studies assessing the predictive ability is steadily increasing, but they vary widely in completeness of reporting and apparent quality. Transparent reporting of the strengths and weaknesses of these studies is important to facilitate the accumulation of evidence on genetic risk prediction. A multidisciplinary workshop sponsored by the Human Genome Epidemiology Network developed a checklist of 25 items recommended for strengthening the reporting of Genetic RIsk Prediction Studies (GRIPS), building on the principles established by prior reporting guidelines. These recommendations aim to enhance the transparency, quality and completeness of study reporting, and thereby to improve the synthesis and application of information from multiple studies that might differ in design, conduct or analysis
    corecore