9 research outputs found

    Vaccination with Mage-3a1 Peptide–Pulsed Mature, Monocyte-Derived Dendritic Cells Expands Specific Cytotoxic T Cells and Induces Regression of Some Metastases in Advanced Stage IV Melanoma

    Get PDF
    Dendritic cells (DCs) are considered to be promising adjuvants for inducing immunity to cancer. We used mature, monocyte-derived DCs to elicit resistance to malignant melanoma. The DCs were pulsed with Mage-3A1 tumor peptide and a recall antigen, tetanus toxoid or tuberculin. 11 far advanced stage IV melanoma patients, who were progressive despite standard chemotherapy, received five DC vaccinations at 14-d intervals. The first three vaccinations were administered into the skin, 3 × 106 DCs each subcutaneously and intradermally, followed by two intravenous injections of 6 × 106 and 12 × 106 DCs, respectively. Only minor (less than or equal to grade II) side effects were observed. Immunity to the recall antigen was boosted. Significant expansions of Mage-3A1–specific CD8+ cytotoxic T lymphocyte (CTL) precursors were induced in 8/11 patients. Curiously, these immune responses often declined after the intravenous vaccinations. Regressions of individual metastases (skin, lymph node, lung, and liver) were evident in 6/11 patients. Resolution of skin metastases in two of the patients was accompanied by erythema and CD8+ T cell infiltration, whereas nonregressing lesions lacked CD8+ T cells as well as Mage-3 mRNA expression. This study proves the principle that DC “vaccines” can frequently expand tumor-specific CTLs and elicit regressions even in advanced cancer and, in addition, provides evidence for an active CD8+ CTL–tumor cell interaction in situ as well as escape by lack of tumor antigen expression

    Generation of an Oncolytic Herpes Simplex Virus 1 Expressing Human MelanA

    Get PDF
    Robust anti-tumor immunity requires innate as well as adaptive immune responses. We have shown that plasmacytoid dendritic cells develop killer cell-like activity in melanoma cell cocultures after exposure to the infectious but replication-deficient herpes simplex virus 1 (HSV-1) d106S. To combine this innate effect with an enhanced adaptive immune response, the gene encoding human MelanA/MART-1 was inserted into HSV-1 d106S via homologous recombination to increase direct expression of this tumor antigen. Infection of Vero cells using this recombinant virus confirmed MelanA expression by Western blotting, flow cytometry, and immunofluorescence. HSV-1 d106S-MelanA induced expression of the transgene in fibroblast and melanoma cell lines not naturally expressing MelanA. Infection of a melanoma cell line with CRISPR-Cas9-mediated knockout of MelanA confirmed de novo expression of the transgene in the viral context. Dependent on MelanA expression, infected fibroblast and melanoma cell lines induced degranulation of HLA-matched MelanA-specific CD8+ T cells, followed by killing of infected cells. To study infection of immune cells, we exposed peripheral blood mononuclear cells and in vitro-differentiated macrophages to the parental HSV-1 d106S, resulting in expression of the transgene GFP in CD11c+ cells and macrophages. These data provide evidence that the application of MelanA-encoding HSV-1 d106S could enhance adaptive immune responses and re-direct MelanA-specific CD8+ T cells to tumor lesions, which have escaped adaptive immune responses via downregulation of their tumor antigen. Hence, HSV-1 d106S-MelanA harbors the potential to induce innate immune responses in conjunction with adaptive anti-tumor responses by CD8+ T cells, which should be evaluated in further studies

    Survival of metastatic melanoma patients after dendritic cell vaccination correlates with expression of leukocyte phosphatidylethanolamine-binding protein 1/Raf kinase inhibitory protein

    Get PDF
    Immunotherapy for metastatic melanoma offers great promise but, to date, only a subset of patients have responded. There is an urgent need to identify ways of allocating patients to the most beneficial therapy, to increase survival and decrease therapy-associated morbidity and costs. Blood-based biomarkers are of particular interest because of their straightforward implementation in routine clinical care. We sought to identify markers for dendritic cell (DC) vaccine-based immunotherapy against metastatic melanoma through gene expression analysis of peripheral blood mononuclear cells. A large-scale microarray analysis of 74 samples from two treatment centers, taken directly after the first round of DC vaccination, was performed. We found that phosphatidylethanolamine binding protein 1 (_PEBP1_)/ Raf Kinase inhibitory protein (RKIP) expression can be used to identify a significant proportion of patients who performed poorly after DC vaccination. This result was validated by q-PCR analysis on blood samples from a second cohort of 95 patients treated with DC vaccination in four different centers. We conclude that low _PEBP1_ expression correlates with poor overall survival after DC vaccination. Intriguingly, this was only the case for expression of _PEBP1_ after, but not prior to, DC vaccination. Moreover, the change in _PEBP1_ expression upon vaccination correlated well with survival. Further analyses revealed that _PEBP1_ expression positively correlated with genes involved in T cell responses but inversely correlated with genes associated with myeloid cells and aberrant inflammation including _STAT3, NOTCH1,_ and _MAPK1_. Concordantly, _PEBP1_ inversely correlated with the myeloid/ lymphoid-ratio and was suppressed in patients suffering from chronic inflammatory disease

    A comparison of two types of dendritic cell as adjuvants for the induction of melanoma-specific T-cell responses in humans following intranodal injection

    No full text
    Dendritic cells (DCs) elicit potent anti-tumoral T-cell responses in vitro and in vivo. However, different types of DC have yet to be compared for their capacity to induce anti-tumor responses in vivo at different developmental stages. Herein, we correlated the efficiencies of different types of monocyte-derived DC as vaccines on the resulting anti-tumor immune responses in vivo. Immature and mature DCs were separately pulsed with a peptide derived from tyrosinase, MelanA/MART-1 or MAGE-1 and a recall antigen. Both DC populations were injected every 2 weeks in different lymph nodes of the same patient. Immune responses were monitored before, during and after vaccination. Mature DCs induced increased recall antigen-specific CD4( ) T-cell responses in 7/8 patients, while immature DCs did so in only 3/8. Expansion of peptide-specific IFN-gamma-producing CD8( ) T cells was observed in 5/7 patients vaccinated with mature DCs but in only 1/7 using immature DCs. However, these functional data did not correlate with the tetramer staining. Herein, immature DCs also showed expansion of peptide-specific T cells. In 2/4 patients vaccinated with mature DCs, we observed induction of peptide-specific cytotoxic T cells, as monitored by chromium-release assays, whereas immature DCs failed to induce peptide-specific cytotoxic T cells in the same patients. Instead, FCS-cultured immature DCs induced FCS-specific IgE responses in 1 patient. Our data demonstrate that this novel vaccination protocol is an efficient approach to compare different immunization strategies within the same patient. Thus, our data define FCS-free cultured mature DCs as superior inducers of T-cell responses in melanoma patients

    Dacarbazine (DTIC) versus vaccination with autologous peptide-pulsed dendritic cells (DC) in first-line treatment of patients with metastatic melanoma : a randomized phase III trial of the DC study group of the DeCOG

    No full text
    BACKGROUND: This randomized phase III trial was designed to demonstrate the superiority of autologous peptide-loaded dendritic cell (DC) vaccination over standard dacarbazine (DTIC) chemotherapy in stage IV melanoma patients. PATIENTS AND METHODS: DTIC 850 mg/m2 intravenously was applied in 4-week intervals. DC vaccines loaded with MHC class I and II-restricted peptides were applied subcutaneously at 2-week intervals for the first five vaccinations and every 4 weeks thereafter. The primary study end point was objective response (OR); secondary end points were toxicity, overall (OS) and progression-free survival (PFS). RESULTS: At the time of the first interim analysis 55 patients had been enrolled into the DTIC and 53 into the DC-arm (ITT). OR was low (DTIC: 5.5%, DC: 3.8%), but not significantly different in the two arms. The Data Safety & Monitoring Board recommended closure of the study. Unscheduled subset analyses revealed that patients with normal serum LDH and/or stage M1a/b survived longer in both arms than those with elevated serum LDH and/or stage M1c. Only in the DC-arm did those patients with (i) an initial unimpaired general health statu

    A phase I vaccination study with tyrosinase in patients with stage II melanoma using recombinant modified vaccinia virus Ankara (MVA-hTyr)

    No full text
    A significant percentage of patients with stage II melanomas suffer a relapse after surgery and therefore need the development of adjuvant therapies. In the study reported here, safety and immunological response were analyzed after vaccination in an adjuvant setting with recombinant modified vaccinia virus Ankara carrying the cDNA for human tyrosinase (MVA-hTyr). A total of 20 patients were included and vaccinated three times at 4-week intervals with 5x10(8) IU of MVA-hTyr each time. The responses to the viral vector, to known HLA class I-restricted tyrosinase peptides, and to dendritic cells transfected with tyrosinase mRNA, were investigated by ELISpot assay on both ex vivo T cells and on T cells stimulated in vitro prior to testing. The delivery of MVA-hTyr was safe and did not cause any side effects above grade 2. A strong response to the viral vector was achieved, indicated by an increase in the frequency of MVA-specific CD4+ and CD8+ T cells and an increase in virus-specific antibody titers. However, no tyrosinase-specific T-cell or antibody response was observed with MVA-hTyr in any of the vaccinated patients. Although MVA-hTyr provides a safe and effective antigen-delivery system, it does not elicit a measurable immune response to its transgene product in patients with stage II melanoma after repeated combined intradermal and subcutaneous vaccination. We presume that modification of the antigen and/or prime-boost vaccination applying different approaches to antigen delivery may be required to induce an effective tyrosinase-specific immune respons
    corecore