1,767 research outputs found

    Superradiance-like Electron Transport through a Quantum Dot

    Full text link
    We theoretically show that intriguing features of coherent many-body physics can be observed in electron transport through a quantum dot (QD). We first derive a master equation based framework for electron transport in the Coulomb-blockade regime which includes hyperfine (HF) interaction with the nuclear spin ensemble in the QD. This general tool is then used to study the leakage current through a single QD in a transport setting. We find that, for an initially polarized nuclear system, the proposed setup leads to a strong current peak, in close analogy with superradiant emission of photons from atomic ensembles. This effect could be observed with realistic experimental parameters and would provide clear evidence of coherent HF dynamics of nuclear spin ensembles in QDs.Comment: 21 pages, 10 figure

    Quantum correlations of light due to a room temperature mechanical oscillator for force metrology

    Full text link
    The coupling of laser light to a mechanical oscillator via radiation pressure leads to the emergence of quantum mechanical correlations between the amplitude and phase quadrature of the laser beam. These correlations form a generic non-classical resource which can be employed for quantum-enhanced force metrology, and give rise to ponderomotive squeezing in the limit of strong correlations. To date, this resource has only been observed in a handful of cryogenic cavity optomechanical experiments. Here, we demonstrate the ability to efficiently resolve optomechanical quantum correlations imprinted on an optical laser field interacting with a room temperature nanomechanical oscillator. Direct measurement of the optical field in a detuned homodyne detector ("variational measurement") at frequencies far from the resonance frequency of the oscillator reveal quantum correlations at the few percent level. We demonstrate how the absolute visibility of these correlations can be used for a quantum-enhanced estimation of the quantum back-action force acting on the oscillator, and provides for an enhancement in the relative signal-to-noise ratio for the estimation of an off-resonant external force, even at room temperature

    Hybrid Architecture for Engineering Magnonic Quantum Networks

    Full text link
    We show theoretically that a network of superconducting loops and magnetic particles can be used to implement magnonic crystals with tunable magnonic band structures. In our approach, the loops mediate interactions between the particles and allow magnetic excitations to tunnel over long distances. As a result, different arrangements of loops and particles allow one to engineer the band structure for the magnonic excitations. Furthermore, we show how magnons in such crystals can serve as a quantum bus for long-distance magnetic coupling of spin qubits. The qubits are coupled to the magnets in the network by their local magnetic-dipole interaction and provide an integrated way to measure the state of the magnonic quantum network.Comment: Manuscript: 4 pages, 3 figures. Supplemental Material: 9 pages, 4 figures. V2: Published version in PRA: 14 pages + 8 figures. Substantial rearrangement of the content of the previous versio

    Nuclear Spin Dynamics in Double Quantum Dots: Multi-Stability, Dynamical Polarization, Criticality and Entanglement

    Full text link
    We theoretically study the nuclear spin dynamics driven by electron transport and hyperfine interaction in an electrically-defined double quantum dot (DQD) in the Pauli-blockade regime. We derive a master-equation-based framework and show that the coupled electron-nuclear system displays an instability towards the buildup of large nuclear spin polarization gradients in the two quantum dots. In the presence of such inhomogeneous magnetic fields, a quantum interference effect in the collective hyperfine coupling results in sizable nuclear spin entanglement between the two quantum dots in the steady state of the evolution. We investigate this effect using analytical and numerical techniques, and demonstrate its robustness under various types of imperfections.Comment: 35 pages, 19 figures. This article provides the full analysis of a scheme proposed in Phys. Rev. Lett. 111, 246802 (2013). v2: version as publishe

    Solid-state magnetic traps and lattices

    Full text link
    We propose and analyze magnetic traps and lattices for electrons in semiconductors. We provide a general theoretical framework and show that thermally stable traps can be generated by magnetically driving the particle's internal spin transition, akin to optical dipole traps for ultra-cold atoms. Next we discuss in detail periodic arrays of magnetic traps, i.e. magnetic lattices, as a platform for quantum simulation of exotic Hubbard models, with lattice parameters that can be tuned in real time. Our scheme can be readily implemented in state-of-the-art experiments, as we particularize for two specific setups, one based on a superconducting circuit and another one based on surface acoustic waves.Comment: 18 pages, 8 figure

    Expansion velocity of a one-dimensional, two-component Fermi gas during the sudden expansion in the ballistic regime

    Get PDF
    We show that in the sudden expansion of a spin-balanced two-component Fermi gas into an empty optical lattice induced by releasing particles from a trap, over a wide parameter regime, the radius RnR_n of the particle cloud grows linearly in time. This allow us to define the expansion velocity VexV_{ex} from Rn=VextR_n=V_{ex}t. The goal of this work is to clarify the dependence of the expansion velocity on the initial conditions which we establish from time-dependent density matrix renormalization group simulations, both for a box trap and a harmonic trap. As a prominent result, the presence of a Mott-insulating region leaves clear fingerprints in the expansion velocity. Our predictions can be verified in experiments with ultra-cold atoms.Comment: 8 pages 10 figures, version as published with minor stylistic change
    • …
    corecore