76 research outputs found

    Biotoxicity of Mars Analog Soils: Microbial, Dispersal into Desiccated Soils Versus Emplacement in Salt or Ice Inclusions Fluids

    Get PDF
    Recent evidence from the Opportunity and Spirit rovers and the Mars Express mission suggests that the soils on Mars might be very high in biotoxic materials including sulfate salts, chlorides, and acidifying agents. Yet, very little is known about how the chemistries of Mars soils might affect the survival and growth of terrestrial microorganisms. The primary objectives of the research included: (1) prepare and characterize Mars analog soils amended with potential biotoxic levels of sulfates, chlorides, and acidifying minerals; and (2) use the simulants to conduct a series of toxicology assays to determine if terrestrial microorganisms from spacecraft can survive direct exposure to the biotoxic soils

    Low Biotoxicity of Mars Analog Soils Suggests that the Surface of Mars May be Habitable for Terrestrial Microorganisms

    Get PDF
    Recent studies on the interactive effects of hypobaria, low temperatures, and CO2-enriched anoxic atmospheres on the growth of 37 species of mesophilic bacteria identified 14 potential biocidal agents that might affect microbial survival and growth on the martian surface. Biocidal or inhibitory factors include (not in priority): (1) solar UV irradiation, (2) low pressure, (3) extreme desiccating conditions, (4) extreme diurnal temperature fluctuations, (5) solar particle events, (6) galactic cosmic rays, (7) UV-glow discharge from blowing dust, (8) solar UV-induced volatile oxidants [e.g., O2(-), O(-), H2O2, O3], (9) globally distributed oxidizing soils, (10) extremely high salts levels [e.g., MgCl2, NaCl, FeSO4, and MgSO4] in surficial soils at some sites on Mars, (11) high concentrations of heavy metals in martian soils, (12) likely acidic conditions in martian fines, (13) high CO2 concentrations in the global atmosphere, and (14) perchlorate-rich soils. Despite these extreme conditions several studies have demonstrated that dormant spores or vegetative cells of terrestrial microorganisms can survive simulated martian conditions as long as they are protected from UV irradiation. What has not been explored in depth are the effects of potential biotoxic geochemical components of the martian regolith on the survival and growth of microorganisms. The primary objectives of the research included: (1) prepare and characterize Mars analog soils amended with potential biotoxic levels of sulfates, salts, acidifying minerals, etc.; and (2) use the simulants to conduct biotoxicity assays to determine if terrestrial microorganisms from spacecraft can survive direct exposure to the analog soils

    EVA Swab Tool to Support Planetary Protection and Astrobiology Evaluations

    Get PDF
    When we send humans to search for life on other planets, we'll need to know what we brought with us versus what may already be there. To ensure our crewed systems meet planetary protection requirements-and to protect our science from human contamination-we'll need to assess whether microorganisms may be leaking or venting from our spacecraft. Microbial sample collection outside of a pressurized spacecraft is complicated by temperature extremes, low pressures that preclude the use of laboratory standard (wetted) swabs, and operation either in bulky spacesuits or with robotic assistance. Engineers at the National Aeronautics and Space Administration (NASA) recently developed a swab kit for use in collecting microbial samples from the external surfaces of crewed spacecraft, including spacesuits. The Extravehicular Activity (EVA) Swab Kit consists of a single swab tool handle and an eight-canister sample caddy. The design team minimized development cost by re-purposing a heritage Space Shuttle tile repair handle that was designed to quickly snap into different tool attachments by engaging a mating device in each attachment. This allowed the tool handle to snap onto a fresh swab attachment much like popular shaving razor handles can snap onto a disposable blade cartridge. To disengage the handle from a swab, the user performs two independent functions, which can be done with a single hand. This dual operation mitigates the risk that a swab will be inadvertently released and lost in microgravity. Each swab attachment is fitted with commercially available foam swab tips, vendor-certified to be sterile for Deoxyribonucleic Acid (DNA). A microbial filter installed in the bottom of each sample container allows the container to outgas and repressurize without introducing microbial contaminants to internal void spaces. Extensive ground testing, post-test handling, and sample analysis confirmed the design is able to maintain sterile conditions as the canister moves between various pressure environments. To further minimize cost, the design team acquired extensive ground test experience in a relevant flight environment by piggy-backing onto suited crew training runs. These training runs allowed the project to validate tool interfaces with pressurized EVA gloves and collect user feedback on the tool design and function, as well as characterize baseline microbial data for different types of spacesuits. In general, test subjects found the EVA Swab Kit relatively straightforward to operate, but identified a number of design improvements that will be incorporated into the final design. Although originally intended to help characterize human forward contaminants, this tool has other potential applications, such as for collecting and preserving space-exposed materials to support astrobiology experiments

    Methane from UV-irradiated carbonaceous chondrites under simulated Martian conditions

    Get PDF
    A UV photolytic process was studied for the production of methane from carbonaceous chondrites under simulated Martian conditions. Methane evolution rates from carbonaceous chondrites were found to be positively correlated to temperature (−80 to 20°C) and the concentration of carbon in the chondrites (0.2 to 1.69 wt%); and decreased over time with Murchison samples exposed to Martian conditions. The amount of evolved methane (EM) per unit of UV energy was 7.9 × 10−13 mol J−1 for UV irradiation of Murchison (1.69 wt%) samples tested under Martian conditions (6.9 mbar and 20°C). Using a previously described Mars UV model (Moores et al., 2007), and the EM given above, an annual interplanetary dust particle (IDP) accreted mass of 2.4 × 105 kg carbon per year yields methane abundances between 2.2 to 11 ppbv for model scenarios in which 20 to 100% of the accreted carbon is converted to methane, respectively. The UV/CH4 model for accreted IDPs can explain a portion of the globally averaged methane abundance on Mars, but cannot easily explain seasonal, temporal, diurnal, or plume fluctuations of methane. Several impact processes were modeled to determine if periodic emplacement of organics from carbonaceous bolides could be invoked to explain the occurrence of methane plumes produced by the UV/CH4process. Modeling of surface impacts of high-density bolides, single airbursts of low-density bolides, and multiple airbursts of a cascading breakup of a low-density rubble-pile comet were all unable to reproduce a methane plume of 45 ppbv, as reported by Mumma et al

    Degradation of Organics in a Glow Discharge Under Martian Conditions

    Get PDF
    The primary objective of this project is to understand the consequences of glow electrical discharges on the chemistry and biology of Mars. The possibility was raised some time ago that the absence of organic material and carbonaceous matter in the Martian soil samples studied by the VikinG Landers might be due in part to an intrinsic atmospheric mechanism such as glow discharge. The high probability for dust interactions during Martian dust storms and dust devils, combined with the cold, dry climate of Mars most likely results in airborne dust that is highly charged. Such high electrostatic potentials generated during dust storms on Earth are not permitted in the low-pressure CO2 environment on Mars; therefore electrostatic energy released in the form of glow discharges is a highly likely phenomenon. Since glow discharge methods are used for cleaning and sterilizing surfaces throughout industry, the idea that dust in the Martian atmosphere undergoes a cleaning action many times over geologic time scales appears to be a plausible one

    Growth Performance and Root Transcriptome Remodeling of Arabidopsis in Response to Mars-Like Levels of Magnesium Sulfate

    Get PDF
    Martian regolith (unconsolidated surface material) is a potential medium for plant growth in bioregenerative life support systems during manned missions on Mars. However, hydrated magnesium sulfate mineral levels in the regolith of Mars can reach as high as 10 wt%, and would be expected to be highly inhibitory to plant growth. at 180 min. after initiation of treatment. mutants exhibit partial tolerance to magnesium sulfate, and by elucidating a small subset (500 vs. >10,000) of candidate genes for mutation or metabolic engineering that will enhance tolerance to magnesium sulfate soils

    Identification of neural networks that contribute to motion sickness through principal components analysis of fos labeling induced by galvanic vestibular stimulation

    Get PDF
    Motion sickness is a complex condition that includes both overt signs (e.g., vomiting) and more covert symptoms (e.g., anxiety and foreboding). The neural pathways that mediate these signs and symptoms are yet to identified. This study mapped the distribution of c-fos protein (Fos)-like immunoreactivity elicited during a galvanic vestibular stimulation paradigm that is known to induce motion sickness in felines. A principal components analysis was used to identify networks of neurons activated during this stimulus paradigm from functional correlations between Fos labeling in different nuclei. This analysis identified five principal components (neural networks) that accounted for greater than 95% of the variance in Fos labeling. Two of the components were correlated with the severity of motion sickness symptoms, and likely participated in generating the overt signs of the condition. One of these networks included neurons in locus coeruleus, medial, inferior and lateral vestibular nuclei, lateral nucleus tractus solitarius, medial parabrachial nucleus and periaqueductal gray. The second included neurons in the superior vestibular nucleus, precerebellar nuclei, periaqueductal gray, and parabrachial nuclei, with weaker associations of raphe nuclei. Three additional components (networks) were also identified that were not correlated with the severity of motion sickness symptoms. These networks likely mediated the covert aspects of motion sickness, such as affective components. The identification of five statistically independent component networks associated with the development of motion sickness provides an opportunity to consider, in network activation dimensions, the complex progression of signs and symptoms that are precipitated in provocative environments. Similar methodology can be used to parse the neural networks that mediate other complex responses to environmental stimuli. © 2014 Balaban et al

    Earth as a Tool for Astrobiology—A European Perspective

    Get PDF
    corecore