91 research outputs found

    Sigma-phase in Fe-Cr and Fe-V alloy systems and its physical properties

    Full text link
    A review is presented on physical properties of the sigma-phase in Fe-Cr and Fe-V alloy systems as revealed both with experimental -- mostly with the Mossbauer spectroscopy -- and theoretical methods. In particular, the following questions relevant to the issue have been addressed: identification of sigma and determination of its structural properties, kinetics of alpha-to-sigma and sigma-to-alpha phase transformations, Debye temperature and Fe-partial phonon density of states, Curie temperature and magnetization, hyperfine fields, isomer shifts and electric field gradients.Comment: 26 pages, 23 figures and 83 reference

    Micro-fabrication of Carbon Structures by Pattern Miniaturization in Resorcinol-Formaldehyde Gel

    Full text link
    A simple and novel method to fabricate and miniaturize surface and sub-surface micro-structures and micro-patterns in glassy carbon is proposed and demonstrated. An aqueous resorcinol-formaldehyde (RF) sol is employed for micro-molding of the master-pattern to be replicated, followed by controlled drying and pyrolysis of the gel to reproduce an isotropically shrunk replica in carbon. The miniaturized version of the master-pattern thus replicated in carbon is about one order of magnitude smaller than original master by repeating three times the above cycle of molding and drying. The micro-fabrication method proposed will greatly enhance the toolbox for a facile fabrication of a variety of Carbon-MEMS and C-microfluidic devices.Comment: 16 pages, 5 figure

    Find the weakest link. A comparison between demographic, genetic and demo-genetic metapopulation extinction times

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>While the ultimate causes of most species extinctions are environmental, environmental constraints have various secondary consequences on evolutionary and ecological processes. The roles of demographic, genetic mechanisms and their interactions in limiting the viabilities of species or populations have stirred much debate and remain difficult to evaluate in the absence of demography-genetics conceptual and technical framework. Here, I computed projected times to metapopulation extinction using (1) a model focusing on the effects of species properties, habitat quality, quantity and temporal variability on the time to demographic extinction; (2) a genetic model focusing on the dynamics of the drift and inbreeding loads under the same species and habitat constraints; (3) a demo-genetic model accounting for demographic-genetic processes and feedbacks.</p> <p>Results</p> <p>Results indicate that a given population may have a high demographic, but low genetic viability or vice versa; and whether genetic or demographic aspects will be the most limiting to overall viability depends on the constraints faced by the species (e.g., reduction of habitat quantity or quality). As a consequence, depending on metapopulation or species characteristics, incorporating genetic considerations to demographically-based viability assessments may either moderately or severely reduce the persistence time. On the other hand, purely genetically-based estimates of species viability may either underestimate (by neglecting demo-genetic interactions) or overestimate (by neglecting the demographic resilience) true viability.</p> <p>Conclusion</p> <p>Unbiased assessments of the viabilities of species may only be obtained by identifying and considering the most limiting processes (i.e., demography or genetics), or, preferentially, by integrating them.</p

    Recurrent fusions in PLAGL1 define a distinct subset of pediatric-type supratentorial neuroepithelial tumors

    Get PDF
    Ependymomas encompass a heterogeneous group of central nervous system (CNS) neoplasms that occur along the entire neuroaxis. In recent years, extensive (epi-)genomic profiling efforts have identified several molecular groups of ependymoma that are characterized by distinct molecular alterations and/or patterns. Based on unsupervised visualization of a large cohort of genome-wide DNA methylation data, we identified a highly distinct group of pediatric-type tumors (n = 40) forming a cluster separate from all established CNS tumor types, of which a high proportion were histopathologically diagnosed as ependymoma. RNA sequencing revealed recurrent fusions involving the pleomorphic adenoma gene-like 1 (PLAGL1) gene in 19 of 20 of the samples analyzed, with the most common fusion being EWSR1:PLAGL1 (n = 13). Five tumors showed a PLAGL1:FOXO1 fusion and one a PLAGL1:EP300 fusion. High transcript levels of PLAGL1 were noted in these tumors, with concurrent overexpression of the imprinted genes H19 and IGF2, which are regulated by PLAGL1. Histopathological review of cases with sufficient material (n = 16) demonstrated a broad morphological spectrum of tumors with predominant ependymoma-like features. Immunohistochemically, tumors were GFAP positive and OLIG2- and SOX10 negative. In 3/16 of the cases, a dot-like positivity for EMA was detected. All tumors in our series were located in the supratentorial compartment. Median age of the patients at the time of diagnosis was 6.2 years. Median progression-free survival was 35 months (for 11 patients with data available). In summary, our findings suggest the existence of a novel group of supratentorial neuroepithelial tumors that are characterized by recurrent PLAGL1 fusions and enriched for pediatric patients

    The Application of User Event Log Data for Mental Health and Wellbeing Analysis

    Get PDF

    Co-Crystal Structures of Inhibitors with MRCKβ, a Key Regulator of Tumor Cell Invasion

    Get PDF
    MRCKα and MRCKβ (myotonic dystrophy kinase-related Cdc42-binding kinases) belong to a subfamily of Rho GTPase activated serine/threonine kinases within the AGC-family that regulate the actomyosin cytoskeleton. Reflecting their roles in myosin light chain (MLC) phosphorylation, MRCKα and MRCKβ influence cell shape and motility. We report further evidence for MRCKα and MRCKβ contributions to the invasion of cancer cells in 3-dimensional matrix invasion assays. In particular, our results indicate that the combined inhibition of MRCKα and MRCKβ together with inhibition of ROCK kinases results in significantly greater effects on reducing cancer cell invasion than blocking either MRCK or ROCK kinases alone. To probe the kinase ligand pocket, we screened 159 kinase inhibitors in an in vitro MRCKβ kinase assay and found 11 compounds that inhibited enzyme activity >80% at 3 µM. Further analysis of three hits, Y-27632, Fasudil and TPCA-1, revealed low micromolar IC50 values for MRCKα and MRCKβ. We also describe the crystal structure of MRCKβ in complex with inhibitors Fasudil and TPCA-1 bound to the active site of the kinase. These high-resolution structures reveal a highly conserved AGC kinase fold in a typical dimeric arrangement. The kinase domain is in an active conformation with a fully-ordered and correctly positioned αC helix and catalytic residues in a conformation competent for catalysis. Together, these results provide further validation for MRCK involvement in regulation of cancer cell invasion and present a valuable starting point for future structure-based drug discovery efforts

    Biology of human hair: Know your hair to control it

    Get PDF
    Hair can be engineered at different levels—its structure and surface—through modification of its constituent molecules, in particular proteins, but also the hair follicle (HF) can be genetically altered, in particular with the advent of siRNA-based applications. General aspects of hair biology are reviewed, as well as the most recent contributions to understanding hair pigmentation and the regulation of hair development. Focus will also be placed on the techniques developed specifically for delivering compounds of varying chemical nature to the HF, indicating methods for genetic/biochemical modulation of HF components for the treatment of hair diseases. Finally, hair fiber structure and chemical characteristics will be discussed as targets for keratin surface functionalization

    Ultrasound-guided diagnostic breast biopsy methodology: retrospective comparison of the 8-gauge vacuum-assisted biopsy approach versus the spring-loaded 14-gauge core biopsy approach

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ultrasound-guided diagnostic breast biopsy technology represents the current standard of care for the evaluation of indeterminate and suspicious lesions seen on diagnostic breast ultrasound. Yet, there remains much debate as to which particular method of ultrasound-guided diagnostic breast biopsy provides the most accurate and optimal diagnostic information. The aim of the current study was to compare and contrast the 8-gauge vacuum-assisted biopsy approach and the spring-loaded 14-gauge core biopsy approach.</p> <p>Methods</p> <p>A retrospective analysis was done of all ultrasound-guided diagnostic breast biopsy procedures performed by either the 8-gauge vacuum-assisted biopsy approach or the spring-loaded 14-gauge core biopsy approach by a single surgeon from July 2001 through June 2009.</p> <p>Results</p> <p>Among 1443 ultrasound-guided diagnostic breast biopsy procedures performed, 724 (50.2%) were by the 8-gauge vacuum-assisted biopsy technique and 719 (49.8%) were by the spring-loaded 14-gauge core biopsy technique. The total number of false negative cases (i.e., benign findings instead of invasive breast carcinoma) was significantly greater (P = 0.008) in the spring-loaded 14-gauge core biopsy group (8/681, 1.2%) as compared to in the 8-gauge vacuum-assisted biopsy group (0/652, 0%), with an overall false negative rate of 2.1% (8/386) for the spring-loaded 14-gauge core biopsy group as compared to 0% (0/148) for the 8-gauge vacuum-assisted biopsy group. Significantly more (P < 0.001) patients in the spring-loaded 14-gauge core biopsy group (81/719, 11.3%) than in the 8-gauge vacuum-assisted biopsy group (18/724, 2.5%) were recommended for further diagnostic surgical removal of additional tissue from the same anatomical site of the affected breast in an immediate fashion for indeterminate/inconclusive findings seen on the original ultrasound-guided diagnostic breast biopsy procedure. Significantly more (P < 0.001) patients in the spring-loaded 14-gauge core biopsy group (54/719, 7.5%) than in the 8-gauge vacuum-assisted biopsy group (9/724, 1.2%) personally requested further diagnostic surgical removal of additional tissue from the same anatomical site of the affected breast in an immediate fashion for a benign finding seen on the original ultrasound-guided diagnostic breast biopsy procedure.</p> <p>Conclusions</p> <p>In appropriately selected cases, the 8-gauge vacuum-assisted biopsy approach appears to be advantageous to the spring-loaded 14-gauge core biopsy approach for providing the most accurate and optimal diagnostic information.</p
    corecore