3 research outputs found

    NEOTROPICAL XENARTHRANS: a data set of occurrence of xenarthran species in the Neotropics

    Get PDF
    Xenarthrans – anteaters, sloths, and armadillos – have essential functions for ecosystem maintenance, such as insect control and nutrient cycling, playing key roles as ecosystem engineers. Because of habitat loss and fragmentation, hunting pressure, and conflicts with 24 domestic dogs, these species have been threatened locally, regionally, or even across their full distribution ranges. The Neotropics harbor 21 species of armadillos, ten anteaters, and six sloths. Our dataset includes the families Chlamyphoridae (13), Dasypodidae (7), Myrmecophagidae (3), Bradypodidae (4), and Megalonychidae (2). We have no occurrence data on Dasypus pilosus (Dasypodidae). Regarding Cyclopedidae, until recently, only one species was recognized, but new genetic studies have revealed that the group is represented by seven species. In this data-paper, we compiled a total of 42,528 records of 31 species, represented by occurrence and quantitative data, totaling 24,847 unique georeferenced records. The geographic range is from the south of the USA, Mexico, and Caribbean countries at the northern portion of the Neotropics, to its austral distribution in Argentina, Paraguay, Chile, and Uruguay. Regarding anteaters, Myrmecophaga tridactyla has the most records (n=5,941), and Cyclopes sp. has the fewest (n=240). The armadillo species with the most data is Dasypus novemcinctus (n=11,588), and the least recorded for Calyptophractus retusus (n=33). With regards to sloth species, Bradypus variegatus has the most records (n=962), and Bradypus pygmaeus has the fewest (n=12). Our main objective with Neotropical Xenarthrans is to make occurrence and quantitative data available to facilitate more ecological research, particularly if we integrate the xenarthran data with other datasets of Neotropical Series which will become available very soon (i.e. Neotropical Carnivores, Neotropical Invasive Mammals, and Neotropical Hunters and Dogs). Therefore, studies on trophic cascades, hunting pressure, habitat loss, fragmentation effects, species invasion, and climate change effects will be possible with the Neotropical Xenarthrans dataset

    Fluttering wing feathers produce the flight sounds of male streamertail hummingbirds

    No full text
    Sounds produced continuously during flight potentially play important roles in avian communication, but the mechanisms underlying these sounds have received little attention. Adult male Red-billed Streamertail hummingbirds (Trochilus polytmus) bear elongated tail streamers and produce a distinctive ‘whirring’ flight sound, whereas subadult males and females do not. The production of this sound, which is a pulsed tone with a mean frequency of 858 Hz, has been attributed to these distinctive tail streamers. However, tail-less streamertails can still produce the flight sound. Three lines of evidence implicate the wings instead. First, it is pulsed in synchrony with the 29 Hz wingbeat frequency. Second, a high-speed video showed that primary feather eight (P8) bends during each downstroke, creating a gap between P8 and primary feather nine (P9). Manipulating either P8 or P9 reduced the production of the flight sound. Third, laboratory experiments indicated that both P8 and P9 can produce tones over a range of 700–900 Hz. The wings therefore produce the distinctive flight sound, enabled via subtle morphological changes to the structure of P8 and P9
    corecore