236 research outputs found

    Probing Dark Energy in the Accelerating Universe with SNAP

    Full text link
    It has now been firmly established that the Universe is expanding at an accelerated rate, driven by a presently unknown form of dark energy that appears to dominate our Universe today. A dedicated satellite mission has been designed to precisely map out the cosmological expansion history of the Universe and thereby determine the properties of the dark energy. The SuperNova/Acceleration Probe (SNAP) will study thousands of distant supernovae, each with unprecedented precision, using a 2-meter aperture telescope with a wide field, large-area optical-to-near-IR imager and high-throughput spectrograph. SNAP can not only determine the amount of dark energy with high precision, but test the nature of the dark energy by examining how its equation of state evolves. The images produced by SNAP will have an unprecedented combination of depth, solid-angle, angular resolution, and temporal sampling and will provide a rich program of auxiliary science.Comment: 5 pages, to appear in the proceedings of the CIPANP 200

    Observation of Strong Variability in the X-Ray Emission from Markarian 421 Correlated with the May 1996 TeV Flare

    Get PDF
    We observed the BL Lac object Markarian 421 with the X-ray satellite RXTE and the Whipple Air Cerenkov Telescope during a two week correlated X-ray/gamma-ray campaign in May 1996. Two dramatic outbursts with extremely rapid and strong flux variations were observed at TeV energies during this period. The X-ray emission in the 2-10 keV band was highly variable and reached a peak flux of 5.6×10−105.6\times10^{-10} erg cm−2^{-2} s−1^{-1}, a historic high. Similar behavior was observed for the TeV emission. In contrast to earlier near-simultaneous X-ray/gamma-ray observations of Mrk 421, the variability amplitude is much larger at TeV than at X-ray energies. This behavior is expected in Synchrotron Self-Compton models.Comment: 5 pages, 2 figures, LaTEX, to appear in proceedings of the 4th Compton Symposium (Williamsburg, VA), 199

    Investigating reciprocity failure in 1.7-micron cut-off HgCdTe detectors

    Full text link
    Flux dependent non-linearity (reciprocity failure) in HgCdTe NIR detectors with 1.7 micron cut-off was investigated. A dedicated test station was designed and built to measure reciprocity failure over the full dynamic range of near infrared detectors. For flux levels between 1 and 100,000 photons/sec a limiting sensitivity to reciprocity failure of 0.3%/decade was achieved. First measurements on several engineering grade 1.7 micron cut-off HgCdTe detectors show a wide range of reciprocity failure, from less than 0.5%/decade to about 10%/decade. For at least two of the tested detectors, significant spatial variation in the effect was observed. No indication for wavelength dependency was found. The origin of reciprocity failure is currently not well understood. In this paper we present details of our experimental set-up and show the results of measurements for several detectors.Comment: 11 pages, 10 figures, to appear in " Astronomical Telescopes and Instrumentation: High Energy, Optical, and Infrared Detectors for Astronomy IV", Proceedings of SPIE Vol. 774

    Precision Photometry to Study the Nature of Dark Energy

    Get PDF
    Over the past decade scientists have collected convincing evidence that the expansion of the universe is accelerating, leading to the conclusion that the content of our universe is dominated by a mysterious 'dark energy'. The fact that present theory cannot account for the dark energy has made the determination of the nature of dark energy central to the field of high energy physics. It is expected that nothing short of a revolution in our understanding of the fundamental laws of physics is required to fully understand the accelerating universe. Discovering the nature of dark energy is a very difficult task, and requires experiments that employ a combination of different observational techniques, such as type-Ia supernovae, gravitational weak lensing surveys, galaxy and galaxy cluster surveys, and baryon acoustic oscillations. A critical component of any approach to understanding the nature of dark energy is precision photometry. This report addresses just that. Most dark energy missions will require photometric calibration over a wide range of intensities using standardized stars and internal reference sources. All of the techniques proposed for these missions rely on a complete understanding of the linearity of the detectors. The technical report focuses on the investigation and characterization of 'reciprocity failure', a newly discovered count-rate dependent nonlinearity in the NICMOS cameras on the Hubble Space Telescope. In order to quantify reciprocity failure for modern astronomical detectors, we built a dedicated reciprocity test setup that produced a known amount of light on a detector, and to measured its response as a function of light intensity and wavelength

    Antiparticles

    Full text link
    Nearly a half century after the discovery of the antiproton the study of cosmic-ray antimatter continues to be an exciting and fertile field. Sensitive searches for heavy cosmic-ray antimatter continue, although in recent years their value as a probe of universal baryon symmetry has all but evaporated. Antiprotons and positrons have opened new windows on the origin and history of cosmic rays. The rarity of antimatter as compared to ordinary cosmic-ray species has posed substantial experimental challenges. Early reports of significant enhancements of antiprotons and high-energy positrons fueled speculation that non-baryonic dark matter had been found. A new generation of balloon-borne magnetic spectrometers employing powerful particle identification techniques to eliminate background have finally managed to uncover the true antimatter signal. These new measurements support simple models of secondary production but also suggest the possibility of a small yet interesting primary component.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43807/1/11214_2004_Article_382988.pd

    Dark Energy Spectroscopic Instrument (DESI) Fiber Positioner Production

    Full text link
    The Dark Energy Spectroscopic Instrument (DESI) is under construction to measure the expansion history of the Universe using the Baryon Acoustic Oscillation technique. The spectra of 35 million galaxies and quasars over 14000 sq deg will be measured during the life of the experiment. A new prime focus corrector for the KPNO Mayall telescope will deliver light to 5000 fiber optic positioners. The fibers in turn feed ten broad-band spectrographs. We will describe the production and manufacturing processes developed for the 5000 fiber positioner robots mounted on the focal plane of the Mayall telescope.Comment: SPIE 201
    • 

    corecore