9 research outputs found

    Impact of pre‐analytical sample handling factors on plasma biomarkers of Alzheimer's disease

    Get PDF
    An unmet need exists for reliable plasma biomarkers of amyloid pathology, in the clinical laboratory setting, to streamline diagnosis of Alzheimer's disease (AD). For routine clinical use, a biomarker must provide robust and reliable results under pre-analytical sample handling conditions. We investigated the impact of different pre-analytical sample handling procedures on the levels of seven plasma biomarkers in development for potential routine use in AD. Using (1) fresh (never frozen) and (2) previously frozen plasma, we evaluated the effects of (A) storage time and temperature, (B) freeze/thaw (F/T) cycles, (C) anticoagulants, (D) tube transfer, and (E) plastic tube types. Blood samples were prospectively collected from patients with cognitive impairment undergoing investigation in a memory clinic. β-amyloid 1-40 (Aβ40), β-amyloid 1-42 (Aβ42), apolipoprotein E4, glial fibrillary acidic protein, neurofilament light chain, phosphorylated-tau (phospho-tau) 181, and phospho-tau-217 were measured using Elecsys® plasma prototype immunoassays. Recovery signals for each plasma biomarker and sample handling parameter were calculated. For all plasma biomarkers measured, pre-analytical effects were comparable between fresh (never frozen) and previously frozen samples. All plasma biomarkers tested were stable for ≤24 h at 4°C when stored as whole blood and ethylenediaminetetraacetic acid (EDTA) plasma. Recovery signals were acceptable for up to five tube transfers, or two F/T cycles, and in both polypropylene and low-density polyethylene tubes. For all plasma biomarkers except Aβ42 and Aβ40, analyte levels were largely comparable between EDTA, lithium heparin, and sodium citrate tubes. Aβ42 and Aβ40 were most sensitive to pre-analytical handling, and the effects could only be partially compensated by the Aβ42/Aβ40 ratio. We provide recommendations for an optimal sample handling protocol for analysis of plasma biomarkers for amyloid pathology AD, to improve the reproducibility of future studies on plasma biomarkers assays and for potential use in routine clinical practice

    Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review

    Get PDF

    Join the dialogue

    No full text

    Interlaboratory comparison of size measurements on nanoparticles using nanoparticle tracking analysis (NTA)

    Get PDF
    One of the key challenges in the field of nanoparticle (NP) analysis is in producing reliable and reproducible characterisation data for nanomaterials. This study looks at the reproducibility using a relatively new, but rapidly adopted, technique, Nanoparticle Tracking Analysis (NTA) on a range of particle sizes and materials in several different media. It describes the protocol development and presents both the data and analysis of results obtained from 12 laboratories, mostly based in Europe, who are primarily QualityNano members. QualityNano is an EU FP7 funded Research Infrastructure that integrates 28 European analytical and experimental facilities in nanotechnology, medicine and natural sciences with the goal of developing and implementing best practice and quality in all aspects of nanosafety assessment. This study looks at both the development of the protocol and how this leads to highly reproducible results amongst participants. In this study, the parameter being measured is the modal particle size
    corecore