72 research outputs found
Temporary ectropion therapy by adhesive taping: a case study
<p>Abstract</p> <p>Introduction</p> <p>Various surgical procedures are available to correct paralytic ectropion, which are applied in irreversible facial paresis. Problems occur when facial paresis has an unclear prognosis, since surgery of the lower eyelid is usually irreversible. We propose a simple method to correct temporary ectropion in facial palsy by applying an adhesive strip.</p> <p>Patients and methods</p> <p>Ten patients with peripheral facial paresis and paralytic ectropion were treated with an adhesive strip to correct paralytic ectropion. We used "Steri-Strips" (45 × 6.0 mm), which were taped on the carefully cleaned skin of the lower eyelid and of the adjacent zygomatic region until the prognosis of the paresis was clarified. In addition to the examiner's evaluation of the lower lacrimal point in the lacrimal lake, subjective improvement of the symptoms was assessed using a visual analogue scale (VAS, 1–10).</p> <p>Results</p> <p>9 patients reported a clear improvement of the symptoms after adhesive taping. There was a clear regression of tearing (VAS (median) = 8; 1 = no improvement, 10 = very good improvement), the cosmetic impairment of the adhesive tape was low (VAS (median) = 2.5; 1 = no impairment, 10 = severe impairment) and most of the patients found the use of the adhesive strip helpful. There was slight reddening of the skin in one case and well tolerated by the facial skin in the other cases.</p> <p>Conclusion</p> <p>The cause and location of facial nerve damage are decisive for the type of surgical therapy. In potentially reversible facial paresis, procedures should be used that are easily performed and above all reversible without complications. Until a reliable prognosis of the paresis can be made, adhesive taping is suited for the temporary treatment of paralytic ectropion. Adhesive taping is simple and can be performed by the patient.</p
Structured inquiry-based learning: Drosophila GAL4 enhancer trap characterization in an undergraduate laboratory course.
We have developed and tested two linked but separable structured inquiry exercises using a set of Drosophila melanogaster GAL4 enhancer trap strains for an upper-level undergraduate laboratory methods course at Bucknell University. In the first, students learn to perform inverse PCR to identify the genomic location of the GAL4 insertion, using FlyBase to identify flanking sequences and the primary literature to synthesize current knowledge regarding the nearest gene. In the second, we cross each GAL4 strain to a UAS-CD8-GFP reporter strain, and students perform whole mount CNS dissection, immunohistochemistry, confocal imaging, and analysis of developmental expression patterns. We have found these exercises to be very effective in teaching the uses and limitations of PCR and antibody-based techniques as well as critical reading of the primary literature and scientific writing. Students appreciate the opportunity to apply what they learn by generating novel data of use to the wider research community
Challenges in cybersecurity: Lessons from biological defense systems
Defending against novel, repeated, or unpredictable attacks, while avoiding attacks on the 'self', are the central problems of both mammalian immune systems and computer systems. Both systems have been studied in great detail, but with little exchange of information across the different disciplines. Here, we present a conceptual framework for structured comparisons across the fields of biological immunity and cybersecurity, by framing the context of defense, considering different (combinations of) defensive strategies, and evaluating defensive performance. Throughout this paper, we pose open questions for further exploration. We hope to spark the interdisciplinary discovery of general principles of optimal defense, which can be understood and applied in biological immunity, cybersecurity, and other defensive realms
- …