3 research outputs found

    Tumor-associated macrophages in breast cancer:Innocent bystander or important player?

    Get PDF
    Tumor-associated macrophages (TAMs) are important tumor-promoting cells in the breast tumor micro environment. Preclinically TAMs stimulate breast tumor progression, including tumor cell growth, invasion and metastasis. TAMs also induce resistance to multiple types of treatment in breast cancer models. The underlying mechanisms include: induction and maintenance of tumor-promoting phenotype in TAMs, inhibition of CD8 + T cell function, degradation of extracellular matrix, stimulation of angiogenesis and inhibition of phagocytosis. Several studies reported that high TAM infiltration of breast tumors is correlated with a worse patient prognosis. Based on these findings, macrophage-targeted treatment strategies have been developed and are currently being evaluated in clinical breast cancer trials. These strategies include: inhibition of macrophage recruitment, re polarization of TAMs to an antitumor phenotype, and enhancement of macrophage-mediated tumor cell killing or phagocytosis. This review summarizes the functional aspects of TAMs and the rationale and current evidence for TAMs as a therapeutic target in breast cancer

    Antibody Positron Emission Tomography Imaging in Anticancer Drug Development

    No full text
    More than 50 monoclonal antibodies (mAbs), including several antibody-drug conjugates, are in advanced clinical development, forming an important part of the many molecularly targeted anticancer therapeutics currently in development. Drug development is a relatively slow and expensive process, limiting the number of drugs that can be brought into late-stage trials. Development decisions could benefit from quantitative biomarkers, enabling visualization of the tissue distribution of (potentially modified) therapeutic mAbs to confirm effective whole-body target expression, engagement, and modulation and to evaluate heterogeneity across lesions and patients. Such biomarkers may be realized with positron emission tomography imaging of radioactively labeled antibodies, a process called immunoPET. This approach could potentially increase the power and value of early trials by improving patient selection, optimizing dose and schedule, and rationalizing observed drug responses. In this review, we summarize the available literature and the status of clinical trials regarding the potential of immunoPET during early anticancer drug development. (C) 2015 by American Society of Clinical Oncolog

    Relevance of Tumor-Infiltrating Immune Cell Composition and Functionality for Disease Outcome in Breast Cancer

    No full text
    Background: Not all breast cancer patients benefit from neoadjuvant or adjuvant therapy, resulting in considerable undertreatment or overtreatment. New insights into the role of tumor-infiltrating immune cells suggest that their composition, as well as their functionality, might serve as a biomarker to enable optimal patient selection for current systemic therapies and upcoming treatment options such as immunotherapy. Methods: We performed several complementary unbiased in silico analyses on gene expression profiles of 7270 unrelated tumor samples of nonmetastatic breast cancer patients with known clinical follow-up. CIBERSORT was used to estimate the fraction of 22 immune cell types to study their relations with pathological complete response (pCR), disease-free survival (DFS), and overall survival (OS). In addition, we used four previously reported immune gene signatures and a CD8+ T-cell exhaustion signature to assess their relationships with breast cancer outcome. Multivariable binary logistic regression and multivariable Cox regression were used to assess the association of immune cell-type fractions and immune signatures with pCR and DFS/OS, respectively. Results: Increased fraction of regulatory T-cells in human epidermal growth factor receptor 2 (HER2)-positive tumors was associated with a lower pCR rate (odds ratio [OR] = 0.15, 95% confidence interval [CI] = 0.03 to 0.69), as well as shorter DFS (hazard ratio [HR] = 3.13, 95% CI = 1.23 to 7.98) and OS (HR = 7.69, 95% CI = 3.43 to 17.23). A higher fraction of M0 macrophages in estrogen receptor (ER)-positive tumors was associated with worse DFS (HR = 1.66, 95% CI = 1.18 to 2.33) and, in ER-positive/HER2-negative tumors, with worse OS (HR = 1.71, 95% CI = 1.12 to 2.61). Increased fractions of gamma delta T-cells in all breast cancer patients related to a higher pCR rate (OR = 1.55, 95% CI = 1.01 to 2.38), prolonged DFS (HR = 0.68, 95% CI = 0.48 to 0.98), and, in HER2-positive tumors, with prolonged OS (HR = 0.27, 95% CI = 0.10 to 0.73). A higher fraction of activated mast cells was associated with worse DFS (HR = 5.85, 95% CI = 2.20 to 15.54) and OS (HR = 5.33, 95% CI = 2.04 to 13.91) in HER2-positive tumors. The composition of relevant immune cell types frequently differed per breast cancer subtype. Furthermore, a high CD8+ T-cell exhaustion signature score was associated with shortened DFS in patients with ER-positive tumors regardless of HER2 status (HR = 1.80, 95% CI = 1.07 to 3.04). Conclusions: The main hypothesis generated in our unbiased in silico approach is that a multitude of immune cells are related to treatment response and outcome in breast cancer
    corecore