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A B S T R A C T

Tumor-associated macrophages (TAMs) are important tumor-promoting cells in the breast tumor micro-
environment. Preclinically TAMs stimulate breast tumor progression, including tumor cell growth, invasion and
metastasis. TAMs also induce resistance to multiple types of treatment in breast cancer models. The underlying
mechanisms include: induction and maintenance of tumor-promoting phenotype in TAMs, inhibition of CD8+ T
cell function, degradation of extracellular matrix, stimulation of angiogenesis and inhibition of phagocytosis.
Several studies reported that high TAM infiltration of breast tumors is correlated with a worse patient prognosis.
Based on these findings, macrophage-targeted treatment strategies have been developed and are currently being
evaluated in clinical breast cancer trials. These strategies include: inhibition of macrophage recruitment, re-
polarization of TAMs to an antitumor phenotype, and enhancement of macrophage-mediated tumor cell killing
or phagocytosis. This review summarizes the functional aspects of TAMs and the rationale and current evidence
for TAMs as a therapeutic target in breast cancer.

Introduction

Breast cancer is the most commonly occurring cancer and the
leading cause of cancer related death in women worldwide, with an
estimated 1.7 million new cases and 521,900 deaths in 2012 [1]. Breast
cancer mortality is decreasing but still accounts for 15% of cancer death
in females especially due to metastatic disease and resistance to sys-
temic therapy [1].

Initially, research exploring mechanisms involved in metastasis and
treatment resistance in breast cancer focused solely on tumor cells
themselves. However, in recent years involvement of the tumor mi-
croenvironment in inducing distant metastasis and therapeutic re-
sistance has been recognized [2]. Several strategies have been explored
to target the non-malignant cells and components in the tumor micro-
environment, such as immune cells and extracellular matrix [3].
Tumor-associated macrophages (TAMs) are also part of this tumor mi-
croenvironment. TAMs can change their phenotypes, depending on the
signals from the surrounding microenvironment, and can either kill
tumor cells or promote tumor cell growth and metastasis [4]. Moreover,
they can induce resistance to multiple types of treatment in preclinical

breast cancer models. Inhibiting the recruitment of macrophages or
reprogramming their phenotype improved treatment response in mouse
models [5–7]. In a meta-analysis including over 2000 patients with all-
stage breast cancers, high TAM infiltrate density in the primary tumor
predicted worse patient prognosis [8]. Therefore, TAMs are increas-
ingly considered of interest as a potential therapeutic target in breast
cancer. Here, we review the functional aspects of TAMs, as well as the
rationale and current evidence for targeting TAMs in breast cancer.

Search strategy

We searched articles published until June 2018 in PubMed using the
following terms: “macrophage”, “tumor-associated macrophage”,
“breast cancer”, “prognosis”, “molecular imaging”, and “breast tumor”
in various combinations. Abstracts of articles in English were reviewed
for relevance. We also searched abstracts of annual meetings of the
American Society of Clinical Oncology, American Association of Cancer
Research and European Society of Medical Oncology, San Antonio
Breast Cancer Symposium in 2014–2018 with the same search terms.
Reference lists of articles were manually searched for relevant articles.
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We included in vitro and/or in vivo studies with human breast cancer,
mammary tumor cell lines and/or transgenic mammary tumor models.
Studies reporting the prognostic value of TAMs in breast cancer with
more than 200 patients since 2010 were included. These studies were
scored according to REMARK criteria [9] (Table S1). Finally,
ClinicalTrials.gov and EudraCT were searched for trials with macro-
phage-targeted drugs.

Supplementary data associated with this article can be found, in the
online version, at https://doi.org/10.1016/j.ctrv.2018.08.010.

Functional aspects of macrophages in cancer

Under physiological conditions, tissue-resident macrophages are
innate immune cells with phagocytic functions. They have extremely
heterogeneous characteristics with tissue- and niche-specific functions,
thereby playing a role in maintaining tissue homeostasis and hosting
defense against pathogens. In many tissues, such as skin, liver, brain,
lung, pancreas and kidney, these macrophages originate from both fetal
tissue (yolk sac and/or fetal liver) and hematopoietic cells (blood
monocytes). An exception is the colon, where resident macrophages are
solely derived from blood monocytes under physiological conditions
[10].

In cancer, TAMs are involved in tumor biology by mediating tumor
growth and progression as well as contributing to therapy resistance
[11]. In breast cancer, TAMs can be abundantly present, and may
constitute over 50% of the number of cells within the tumor. The breast
cancer microenvironment also consists of fibroblasts, adipocytes and
several types of leukocytes, such as neutrophils, lymphocytes and
dendritic cells [12] (Fig. 1). Resident macrophages and recruitment of
circulating monocytes sustain TAM accumulation in breast cancer [13].
Recruited monocytes develop into non-polarized (M0) macrophages by
monocyte colony stimulating factor (M-CSF, also known as CSF1; Fig. 1)
[14]. M0 macrophages are highly plastic and can change their

phenotypes under influence of environmental signals. The resulting
intratumoral macrophage populations can be classified along a func-
tional scale [15,16]. In this classification, M1-like and M2-like macro-
phages represent two extremes of this functional continuum [15,16].
The M1-like macrophages, also called classically activated macro-
phages, are stimulated by the type 1 T helper cell (Th1) cytokines such
as interferon-γ (IFN-γ) or tumor necrosis factor (TNF). They exhibit
antitumor capacity by releasing pro-inflammatory cytokines (such as
TNF and interleukin (IL)-2), together with reactive nitrogen and oxygen
intermediates [17,18]. In contrast, the M2-like macrophages, also
called alternatively activated macrophages, are stimulated by the type 2
T helper cell (Th2) cytokines such as IL-4, IL-10 and IL-13, and show
protumor characteristics [18] (Fig. 1). Most TAMs in the tumor mi-
croenvironment are closely related to the M2-like phenotype [16]. Next
to the binary model of M1-like and M2-like macrophages, attention has
been focused on a more spectral polarization model in which a mono-
cyte can develop into different subtypes based on their molecular
profile [19].

In the tumor microenvironment, cancer cells secrete cytokines to
recruit macrophages. M2-like TAMs in return produce high amounts of
protumor cytokines to influence tumor progression [16,20,21] (Fig. 1).
TAMs inhibit infiltration and function of antitumor CD8+ T-cells
(CTLs), stimulate angiogenesis in the tumor, and promote tumor cell
proliferation and metastasis [5,22]. Moreover, TAMs induce treatment
resistance in breast cancer xenografts in mice [5–7].

Rationale for therapeutic targeting TAMs in breast cancer

Prognostic value of TAMs present in breast cancer tissue

High density of cells expressing macrophage-associated markers in
primary breast cancer was associated in general with worse patient
prognosis (Table 1) [23–32]. In general, included studies were of high

Fig. 1. The tumor microenvironment of
breast cancer. The breast tumor micro-
environment comprises several stromal cell
types, including adipocytes, fibroblasts and
immune cells. Tumor-associated macro-
phages (TAMs) are very important compo-
nents in this microenvironment. Breast
cancer cells secrete colony stimulating
factor 1 (CSF1) and chemokine (C-C motif)
ligand 2 (CCL2) to recruit monocytes from
blood vessels. Under the influence of the
microenvironmental signals, the recruited
monocytes develop into a wide range of
TAMs with different functions. M1-like and
M2-like TAMs may represent the two ex-
tremes of the TAMs population. M1-like
TAMs are activated by cytokines secreted
from type 1 helper cell (Th1) such as
interferon—γ (IFN–γ) or tumor necrosis
factor (TNF) and show antitumor capacity.
M2-like TAMs are activated by cytokines
secreted from type 2 helper cell (Th2) such
as interleukin (IL)-4, IL-10 and IL-13. M2-
like TAMs promote tumor progression by
secretion of cytokines such as matrix me-
talloproteases (MMPs), vascular endothelial
growth factor A (VEGF-A), CCL18 and IL-
10. This figure was prepared using a tem-
plate on the Servier medical art website
(http://www.servier.fr/servier-medical-
art).
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quality according to REMARK criteria (Table 1; Supplementary
Table 1). CD68, a glycoprotein mainly localized in the endosomal
compartment, has been widely used as a human pan-macrophage
marker [33]. CD68+ macrophage infiltration was associated with poor
prognostic breast cancer characteristics: larger tumor size, higher tumor
grade, lymph node metastasis, vascular invasion, hormone receptor
negativity, human epidermal growth factor receptor 2 (HER2) expres-
sion and basal phenotype [23,25]. Moreover, high infiltration of
CD68+ macrophages in general was associated with worse disease-free
survival (DFS), breast cancer specific survival (BCSS) and overall sur-
vival (OS) [23–25,27]. However, only few studies have shown CD68+
macrophage infiltration to be an independent predictor of patient
prognosis, when corrected for TAM spatial localization in the tumor or
breast cancer subtype [27]. The prognostic value of CD68+ macro-
phages may be breast cancer subtype dependent. High infiltration of
CD68+ macrophages was associated with shorter DFS and/or OS in
patients with triple negative breast cancer (TNBC: absence of estrogen
receptor (ER), progesterone receptor and HER2 expression) and ER+
breast cancer [24,27]. Contradictory data regarding the prognostic
value of CD68+ macrophages has been reported in literature, in which
high infiltration of CD68+ macrophages was associated with improved
RFS and BCSS in patients with ER- breast cancer [28]. This discrepancy
may be due to the different methodologies used for histological

assessment of TAMs, e.g. quantification of stromal, intratumoral or total
macrophages and different cut-off points chosen to define a high
CD68+ macrophages infiltration (Table 1). Moreover, CD68 as marker
for TAMs has some limitations. Firstly, in humans, CD68 is expressed by
a wide range of cells, including fibroblasts, granulocytes, dendritic
cells, endothelial cells and some lymphoid subsets [22,33]. Secondly, as
a pan-macrophage marker, CD68 cannot distinguish TAM subpopula-
tions.

Additional markers have been used to identify TAM phenotypes.
CD163 has been validated as marker for protumor M2-like macro-
phages [8,34]. CD163+ TAMs in primary breast cancers were strongly
associated with adverse clinicopathological characteristics
[20,25,26,29,30], and were independently prognostic for DFS, BCSS or
OS in most studies [20,25,26,29,30] (Table 1). Similarly, the prognostic
value of CD163+ macrophages may depend on breast cancer subtype.
High infiltration of CD163+ macrophages was an independent prog-
nostic factor for worse DFS and/or OS in patients with both TNBC and
HER2+ breast cancers [25,29]. A few studies reported other markers
such as macrophage receptor with collagenous structure (MARCO),
CD206 and CD204 to detect the M2-like TAMs. Data about the prog-
nostic value of these markers for breast cancer patients is limited
[35–37].

Gene-expression-based data confirmed the prognostic value of

Fig. 2. Mechanisms of tumor-associated
macrophages (TAMs) in promoting breast
tumor growth and metastasis. Tumor growth
Over-expression of cyclooxygenase-2 (COX-
2) in TAMs increases the expression of in-
terleukin 10 (IL-10) and indoleamine 2,3-
dioxygenase (IDO) and further suppresses
CD8+ T cell proliferation and interferon γ
(IFN-γ) production. Thereby, this reduces
tumor cell killing by CD8+ T cells. In ad-
dition, COX-2+ TAMs activate the PI3K-Akt
pathway in cancer cells and increase the
anti-apoptotic factor Bcl-2 and decrease the
pro-apoptotic factor Bax expression.
Together, these promote tumor cell growth.
Local invasion TAMs secret proteases that
degrade extracellular matrix (ECM).
Furthermore, TAMs facilitate tumor cell
migration and invasion through interacting
with each other. These interactions include
secreted protein acidic and rich in cysteine
(SPARC) and αvβ5 integrins, Chemokine (C-
C motif) ligand 18 (CCL18) and phosphati-
dylinositol transfer protein 3 (PITPNM3),
epidermal growth factor (EGF) and EGF re-
ceptor (EGFR), colony stimulating factor 1
(CSF1) and CSF1 receptor (CSF1R).
Intravasation Vascular endothelial growth
factor A (VEGF-A) is secreted from macro-
phages in the tumor microenvironment of
metastasis (TMEM) structure, which con-
sists of the direct contact of a TIE2-expres-
sing TAM, a mammalian enabled over-
expressing tumor cell and an endothelial
cell. TMEM-derived VEGF-A promotes
tumor cell intravasation. Extravasation In
the metastatic sites, macrophages contribute
to premetastatic niche establishment. The
metastasis-associated macrophages (MAMs)

derived VEGF-A promotes tumor cell extravasation. Metastatic tumor cell growth VEGF-A promotes breast tumor cell seeding and persistent growth after seeding
through activation of the VEGFR1-Focal adhesion kinase (FAK1)-CSF1-C-ets-2 (ETS2)-microRNAs signaling in MAMs. In return, tumor cells secrete CCL2 to recruit
monocytes which further develop into MAMs. Moreover, the CCL2-CCR2 signaling in MAMs can activate the CCL3-CCR1 signaling, which prolongs the retention of
MAMs in the metastatic site and eventually promotes tumor cell extravasation and seeding. In addition, the angiopoietin-2 (Ang2)-TIE2 signaling promote the post-
seeding tumor cell growth. Macrophages also interact with other immune cells in the tumor microenvironment; however, it is beyond the scope of this article. This
figure was prepared using a template on the Servier medical art website (http://www.servier.fr/servier-medical-art).
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TAMs and demonstrated the predictive value in patients with breast
cancer. These prognostic and predictive values of TAMs, generated from
gene expression profile analysis using the CIBERSORT algorithm, were
demonstrated in a breast cancer subtype dependent manner (Table 1).
In ER- tumors, a higher fraction M2 TAMs was strongly associated with
a lack of pathologically complete response (pCR) to neoadjuvant che-
motherapy and a poorer outcome [31]. In ER+/HER2- tumors, a higher
fraction of M0 TAMs was associated with poorer outcome [31,32],
while a higher fraction of M1 TAMs was associated with a higher pCR
rate and better patient prognosis [32].

Taken together, in general, high infiltration of TAMs is associated
with unfavourable clinicopathological features and survival in patients
with primary invasive breast cancer. Their polarization, localization
and the relative amount related to other immune type fractions in a
tumor lesion may be more important than their mere presence. For
instance, it is conceivable that M1/M2 ratio affects outcome in breast
cancer, as has been shown in ovarian cancer [38]. Besides aspects re-
garding TAMs, tumor aspects such as breast cancer molecular subtype
could be taken into account for determining the prognostic and/or
predictive role of TAMs.

Preclinical evidence for role of TAMs in breast tumor growth and metastasis

Tumor growth
Protumor TAMs were required for primary invasive mammary

tumor formation in a transplantable p53-null mouse model studied for
early progression [39]. Targeting TAMs with either selective monocyte
targeting chemotherapeutic agent trabectedin, or CSF1 inhibitors, de-
creased TAM infiltration, reduced tumor growth and metastasis for-
mation, while prolonging survival in a breast cancer xenograft mouse
model [40,41].

Overexpression of cyclooxygenase-2 (COX-2) in macrophages by
adenoviral COX-2 transfection maintained the protumor M2-like phe-
notype [42]. In human peripheral blood mononuclear cell culture ex-
periments, epinephrine-induced COX-2 expression increased IL-10 and
indoleamine 2,3-dioxygenase (IDO) levels, which inhibited CTL pro-
liferation and IFN-γ production. This CTL suppression could be reversed
in in vivo and ex vivo breast tumor cultures by means of COX-2 inhibitor
celecoxib [43]. Moreover, COX-2+ TAMs enhanced MCF-7 and MDA-
MB-231 proliferation, by activating phosphoinositide 3-kinase (PI3K)-
Akt signaling as well as apoptosis inhibition through increased Bcl-2
and decreased Bax expression [42] (Fig. 2). Blocking PI3K-Akt signaling
with adenoviral siRNA Akt1 transfection suppressed this [42].

Metastasis
In animal models, TAMs regulated all metastatic processes, in-

cluding local invasion, blood vessel intravasation, extravasation at
distant sites and metastatic cell growth promotion [2] (Fig. 2). Local
invasion largely depends on extracellular matrix (ECM) characteristics.
TAM production of matrix metalloproteinases (MMPs), cysteine cathe-
psins and serine proteases, allowed ECM disruption and subsequent
tumor cell invasion into the surrounding tissue [44]. Also secretion of
secreted protein acidic and rich in cysteine (SPARC) [45], chemokine
(C-C motif) ligand 18 (CCL18) [46] and epidermal growth factor (EGF)
[47] by TAMs had protumor effects (Fig. 2). These factors mediated
tumor cell adherence to fibronectin [46], increased tumor infiltration
by regulatory T cells [48], and destabilized ECM by activating E2F3
signaling in TAMs [49]. Interfering with these processes reduced tumor
cell invasiveness and metastasis in in vitro and in vivo breast cancer
models [45–47].

A subset of TAMs, the perivascular TIE2-expressing TAMs, promoted
intravasation by expressing vascular endothelial growth factor A
(VEGF-A) [50] (Fig. 2). Inhibition of TIE2 kinase or blocking TIE2 li-
gand angiopoietin-2 (Ang2), inhibited intravasation and metastasis in
the PyMT mammary tumor model [51,52]. In the same model, mac-
rophages induced epithelial mesenchymal transition and early

intravasation in pre-malignant lesions, thereby fueling late metastasis
[53].

Macrophages played a major role in tumor cell extravasation, by
establishing the pre-metastatic niche at distant metastatic sites [54].
The CCL2-CCR2 signaling pathway promoted the early recruitment of
inflammatory monocytes to the pre-metastatic niche. Here the recruited
monocytes developed into metastasis-associated macrophages (MAMs).
MAM-derived VEGF-A promoted tumor cell extravasation and seeding
[55]. Moreover, CCL2-CCR2 signaling also activated CCL3-CCR1 (re-
ceptor of CCL3) signaling in MAMs, which supported MAM accumula-
tion at the metastatic site. This process promoted breast cancer cell
extravasation and seeding in several mouse models of breast cancer
metastasis [56] (Fig. 2). In addition, TAM production of IL-1β, induced
by CCL2, resulted in systemic inflammatory cascades leading to neu-
trophil-mediated promotion of mammary tumor metastasis in mice
[57]. These data indicate that one or multiple CCL2-CCR2 signaling
dependent pathways mediate breast cancer progression.

In breast cancer mouse models for lung metastases, metastatic cell
growth after tumor cell seeding required continuous macrophage re-
cruitment [54,55], and could be decreased by conditional macrophage
deletion [54]. Metastatic cell growth promotion was mediated by FMS-
like tyrosine kinase 1 (FLT1, also known as VEGFR1)-focal adhesion
kinase (FAK1)-CSF1 and CSF1-C-ets-2-microRNAs signaling pathways
in macrophages [58,59] (Fig. 2). In addition, the Ang2-TIE2 pathway
contributed to post-seeding metastatic growth. Blocking these pathways
dramatically reduced metastases outgrowth in mouse models
[52,58,59]. Also pattern recognition scavenger receptor MARCO, co-
expressed with M2-like markers on TAMs, played a role in promoting
breast cancer metastasis [35]. MARCO antibody treatment of mice
bearing 4 T1 mammary carcinoma repolarized M2-like to M1-like
TAMs, thus inhibiting metastasis. Additionally, it increased germinal
center formation and CD4+/CD8+ T cell ratio in the draining lymph
nodes thereby improving tumor immunogenicity [35]. The granulo-
cyte-macrophage colony stimulating factor (GM-CSF) and CCL18 feed-
back loop also contributed to macrophage stimulated metastasis. In a
humanized mouse model bearing a human breast cancer xenograft, GM-
CSF activated TAMs, which induced epithelial-mesenchymal transition
and metastasis through CCL18. Inhibition of GM-CSF or CCL18 with
antibodies broke the feedback loop and reduced metastasis formation
[21].

Together, these results show that several signaling pathways in
macrophages are likely to be involved in tumor progression, including
tumor growth and all steps in tumor metastasis (Fig. 2). Reduction of
macrophage infiltration, inhibition of involved signaling pathways, or
interruption of the interaction between TAMs and tumor cells could
thus be potential targets in breast cancer therapy.

Preclinical evidence for a role of TAMs in breast cancer treatment resistance

In multiple cancer types including breast cancer, TAMs profoundly
influence therapy efficacy of conventional treatments such as che-
motherapy and radiotherapy, but also targeted drugs and im-
munotherapy, including checkpoint blockade [60].

Chemotherapy
In mouse tumor models and breast cancer tissue of patients, pacli-

taxel treated tumors showed higher infiltration of TAMs compared to
non-treated tumors [6,61]. Preclinically, TAM infiltration was mediated
by elevated CSF1mRNA expression in tumor cells following exposure to
paclitaxel [6]. The recruited TAMs suppressed paclitaxel-induced mi-
totic arrest and promoted earlier mitotic slippage in breast cancer cells
[62]. Inhibiting TAM recruitment by blocking CSF1-CSF1 receptor
(CSF1R) signaling, enhanced paclitaxel effect and prolonged survival of
the mice [6,62]. This was accompanied by enhanced CTL infiltration,
and decreased vascular density through reducing VEGF mRNA expres-
sion [6]. CTLs were required for the improved paclitaxel effect, since
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Table 2
Drugs targeting tumor-associated macrophages in clinical trials for breast cancer patients.

Target Drugs Clinical Trials identifier Phase Indication Subtype Drug combined with

CSF1-CSF1R inhibition Pexidartinib NCT01596751 (Active not recruiting) I/II B All/TN Eribulin
NCT01525602 (Completed) Ib S - B All Paclitaxel
NCT01042379 (Recruiting; arm closed for
pexidartinib)

II B All

Emactuzumab NCT02323191 (Recruiting) I S - B TN Atezolizumab
NCT02760797 (Completed) I S - B TN Selicrelumab
NCT01494688 (Completed) I S - B All/TN Paclitaxel

LY3022855 NCT02265536 (Completed) I B - P All
NCT02718911 (Recruiting) I S - B All Durvalumab, tremelimumab

ARRY-382 NCT01316822 (Completed) I S - B All
NCT02880371 (Recruiting) I/II S - B TN Pembrolizumab

Lacnotuzumab NCT02435680/EUCTR 2015-000179-29
(Active not recruiting)
NCT02807844/EUCTR 2016–000210-29
(Recruiting)
NCT03285607 (Not yet recruiting)

II
Ib/II
I

B
S – B
B

TN
TN
HR+/HER2-

Carboplatin, gemcitabine
Spartalizumab
Doxorubicin, cyclophosphamide,
paclitaxel

PD 0360324 NCT02554812 (Recruiting) Ib/II S - B TN Avelumab
BLZ945 NCT02829723 (Recruiting) I/II S - B TN Spartalizumab

CD47-SIRPα inhibition TTI-621 NCT02890368 (Recruiting) I S - B All
ALX148 NCT03013218 (Recruiting) I S All/HER2+ Pembrolizumab, trastuzumab
Ti-061 EUCTR 2016-004372-22 (Prematurely ended) I/II S - B All Pembrolizumab
Hu5F9-G4 NCT02216409 (Active, not recruiting) I S - B All

NCT02953782 (Recruiting) I/II S - B All Cetuximab
CD40 stimulation Selicrelumab NCT02225002 (Completed) I S - B All

NCT02157831 (Completed) I S - B All
NCT02665416 (Recruiting) I S - B All Vanucizumab
NCT02760797 (Completed) I S - B TN Emactuzumab

CR3 stimulation BTH1677 NCT02981303 (Recruiting) I B - M TN Pembrolizumab
TLR7 stimulation Imiquimod NCT00899574 (Completed) II B All

NCT01421017 (Active, not recruiting) I/II B All Cyclophosphamide, radiation
NCT00821964 (Completed) II B All Nab-paclitaxel

852A NCT00319748 (Completed) II S - B All
CCL2-CCR2 inhibition Carlumab NCT01204996 (Completed) I S - B All ChemotherapyØ

Ang2-TIE2 inhibition Trebananib NCT01548482 (Completed) Ib S - B All Temsirolimus
NCT00511459 (Completed) II B HER2- Paclitaxel, bevacizumab
NCT00807859 (Completed) Ib B HER2+ Multiple combinationsΔ

NCT01042379 (Recruiting; arm closed for
trebananib)

II B All/HER2+ Trastuzumab

Vanucizumab NCT02665416 (Recruiting) I S - B All Selicrelumab
AMG780 NCT01137552 (Terminated) I S - B All
Nesvacumab NCT01271972 (Completed) I S - B All
Rebastinib NCT02824575 (Recruiting) I B HER2- Paclitaxel, eribulin
BI 836880 NCT02674152 (Active, not recruiting) I S - B All

Membrane death receptors
activation

Trabectedin NCT00050427 (Completed) II B All
NCT00580112 (Completed) II B TN/HER2+/B
NCT03127215 (Not yet recruiting) II S - B RCA mut

HRR
Olaparib

Macrophages Zoledronic acid Approved for bone metastasis and in the
adjuvant setting

na B All na

COX-2 inhibition Celecoxib Multiple completed trials (Completed) I/II B Multiple combinations
NCT01695226 (Completed) II B All
NCT00525096 (Completed) III B HR+ Exemestane
NCT02429427 (Active not recruiting) III B All Endocrine treatment
NCT03185871 (Recruiting) II B HR+

Ang2: angiopoietin-2; B: breast cancer; BRCA mut: BRCA1/2 germline mutation carriers; CCL2: chemokine (C-C motif) ligand 2; CCR2: CCL2 receptor; COX-2:
cyclooxygenase-2; CR3: complement receptor 3; CSF1(R): colony stimulating factor 1 (receptor); HER2: human epidermal growth factor receptor 2; HR: hormone
receptor; HRR: homologous recombination repair deficient solid tumors; M: melanoma; na: not applicable; NRP1: neuropilin-1; P: prostate cancer; S: solid tumors;
SIRPα: signal-regulatory protein alpha; TLR7: toll-like receptor 7; TN: triple-negative; Ø liposomal doxorubicin, gemcitabine, paclitaxel and carboplatin, docetaxel; Δ

paclitaxel and trastuzumab, capecitabine and lapatinib.
Drugs: ALX148: SIRPα fusion protein; AMG780: anti-Ang1/2 mAb; ARRY-382: anti-CSF1R TKI; BLZ945: anti-CSF1R TKI; BTH1677: 1,3–1,6 β-glucan; carlumab:
anti-CCL2 mAb; celecoxib: selective COX-2 inhibitor; selicrelumab: CD40 agonistic mAb; emactuzumab: anti-CSF1R monoclonal antibody (mAb); imiquimod: TLR7
agonist; LY3022855; anti-CSF1R mAb; lacnotuzumab: anti-CSF1 mAb; nesvacumab: anti-Ang2 mAb; PD 0360324: anti-CSF1 mAb; pexidartinib: anti-CSF1R tyrosine
kinase inhibitor (TKI); rebastinib: anti-TIE2 TKI; Ti-061: anti-CD47 mAb; trabectedin: DNA minor groove binder; trebananib: anti-Ang1/2 bispecific peptibody; TTI-
621: SIRPα -Fc fusion protein; vanucizumab: anti-Ang2-vascular endothelial growth factor A (VEGF-A) bispecific mAb; vesencumab: anti-NRP1 mAb; zoledronic acid:
osteoclast-mediated bone resorption inhibitor; 852A: TLR7 agonist.
Drugs combined with: atezolizumab: anti-programmed death ligand 1 (PDL1) mAb; bevacizumab: anti-VEGF-A mAb; durvalumab: anti-PDL1 mAb; exemestane:
aromatase inhibitor; olaparib: poly (ADP-ribose) polymerase inhibitor; spartalizumab: anti-PD1 mAb; pembrolizumab: anti-programmed death 1 (PD1) mAb; seli-
crelumab: CD40 agonist mAb; temsirolimus: mammalian target of rapamycin inhibitor; trastuzumab: anti-human epidermal growth factor receptor 2 mAb; tre-
melimumab: anti-cytotoxic T-lymphocyte-associated protein 4 mAb.
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CTL depletion diminished the effect of the anti-CSF1R–paclitaxel
treatment [6]. Macrophages also inhibited the antitumor effect of other
chemotherapeutic agents, such as doxorubicin, etoposide, gemcitabine
and CMF regimen (cyclophosphamide, methotrexate, 5-fluorouracil), in
in vitro or in vivo studies [62,63].

However, TAM recruitment was only partially blocked by CSF1-
CSF1R inhibition, leaving a population of perivascular TAMs unaffected
[6]. Although the phenotype of remaining TAMs has not been identi-
fied, at least a proportion of them were perivascular TIE2-expressing
TAMs [22], which were an essential source of VEGF-A [50]. Together,
these data indicate that other mechanisms, besides VEGF-A secretion,
may contribute to TAM-mediated chemoresistance in breast cancer.
One of those mechanisms might involve TAM-derived cathepsins, spe-
cifically cathepsin B and cathepsin S, which protected murine mam-
mary tumor cells from paclitaxel-, etoposide- or doxorubicin induced
cell death in ex vivo co-cultures [61]. Although the downstream sig-
naling pathways were ill-defined, this protective effect was abrogated
by a cathepsin inhibitor both in vivo and ex vivo [61]. Another che-
moprotective effect resulted from TAM-derived IL-10. An IL-10 anti-
body reversed IL-10 mediated paclitaxel resistance of human breast
cancer cells in ex vivo co-culture studies [64]. Possibly, IL-10-mediated
drug resistance is associated with up-regulation of signal transducer and
activator of transcription 3 (STAT3) signaling and elevation of anti-
apoptotic bcl-2 gene expression in tumor cells [64]. The importance of
TAM-derived factors such as IL-10 in chemoresistance, suggests that
repolarization to a more M1-like phenotype is a potential strategy to
enhance chemotherapy efficacy. This was already shown for selective
class IIa histone deacetylase (HDACIIa) inhibitor TMP195. This drug
modulated TAMs into the M1-like phenotype, and decreased tumor
burden in MMTV-PyMT mice, particularly when combined with pacli-
taxel [65].

Taken together, TAM-targeted therapy could be a potential strategy
to reverse chemoresistance and improve chemotherapeutic efficacy in
breast cancer.

Radiotherapy
In MMTV-PyMT mice, radiation induced tumor CSF1 expression

dose dependently [6]. TAM depletion by CSF1R blockade enhanced the
effect of radiotherapy for mammary tumors in the same mouse model
[7]. CSF1R blockade increased CTL infiltration and reduced presence of
CD4+T cells in the tumors. Interestingly, depleting CD4+T cells had
the same effect as CSF1R blockade when combined with radiotherapy,
highlighting the interaction of macrophages with other immune cells
[7]. MMP14 expression may also account for TAM-induced radio-
therapy resistance. In a 4 T1 tumor bearing mouse model, MMP14
blockade repolarized M2-like to M1-like TAMs. Moreover, MMP14
blockade inhibited angiogenesis, increased vascular perfusion and en-
hanced the effect of radiotherapy [66]. Topical application of the cream
imiquimod, a toll-like receptor 7 (TLR7) agonist, on mammary tumor
lesions also repolarized TAMs to the M1-like phenotype and enhanced
the effect of local radiotherapy [67].

In summary, TAM depletion or repolarization could be a potential
strategy to enhance radiotherapeutic efficacy in breast cancer.

Anti-HER2 targeted therapy
Trastuzumab has antitumor activity by interference with HER2

oncogenic signaling and the activation of antibody dependent cellular
cytotoxicity (ADCC) [68]. The adaptive immune system also plays a
role in the antitumor efficacy of trastuzumab [69]. In HER2+ TUBO
mammary tumor bearing mice, CTLs were essential for the therapeutic
effect of anti-HER2 antibody treatment. CTL infiltration in the tumor
increased after antibody treatment, accompanied with tumor regres-
sion. However, rapid tumor regrowth was seen after CTL depletion by
an anti-CD8-depleting antibody [69], suggesting a T cell dependent
mechanism for HER2 antibody treatment resistance. This may be
mediated by TAMs, as they inhibited CTL infiltration in TUBO tumor

bearing mouse model [5]. TAM depletion as well as repolarizing M2-
like to M1-like TAMs, dramatically increased the therapeutic effect of a
HER2 antibody. Also CTL infiltration and IFN-γ-production in the tumor
increased [5]. However, merely increasing the tumor infiltrating CTLs
without removal of TAMs failed to reverse anti-HER2 resistance [70].
Also, blocking the interaction between CD47 and signal-regulatory
protein alpha (SIRPα) may be a macrophage-mediated way to improve
trastuzumab efficacy. Blocking CD47, the ‘don’t eat me’ signal ex-
pressed by tumor cells, increased phagocytosis of breast cancer cells in
vitro. Furthermore, CD47 antibody inhibited growth of a human breast
cancer xenograft [71]. However, targeting SIRPα with high-affinity
monomers did not increase direct macrophage phagocytosis. But com-
bined with trastuzumab, the monomers increased macrophage-medi-
ated antibody dependent cellular phagocytosis (ADCP) by lowering the
ADCP threshold. In a breast cancer xenograft, the combination showed
synergistic antitumor effect [72]. The ADCP capacity of macrophages
appeared to be dependent of their phenotype. In vitro, M1-like macro-
phages in the presence of trastuzumab were more potent in phagocy-
tosis compared to M2-like macrophages [73]. Moreover the combina-
tion of CD47 blockage and trastuzumab enhanced neutrophil-mediated
ADCC [74]. Additionally, blocking the CD47-SIRPα axis increased DNA
sensing in dendritic cells, which improved the antitumor immunity with
an enhanced CTLs response [75].

Together, these data provide a new paradigm of potential combi-
nation therapeutic strategy with TAM-targeted treatment for breast
cancer patients receiving anti-HER2 treatment. The anti-HER2/TAM
targeting combination in clinical trials is summarized in Table 2.

Immunotherapy
The programmed death-1 (PD-1)/programmed death-ligand 1 (PD-

L1) axis, which induces immune tolerance of activated T cells, has
become a target in cancer immunotherapy. Intravital imaging of a MC-
38 colon cancer allograft illustrated that macrophages mediated PD-1
therapy resistance through capturing the PD-1 antibody by the Fcγ re-
ceptor, thereby preventing T cell drug exposure [76]. Furthermore,
TAMs expressed PD-1 and PD-L1 [22,77]. PD-1 expression on TAMs
correlated negatively with their phagocytic capacity both in vitro and in
vivo [77]. This has raised interest in the combination of macrophage-
targeted therapy and immune checkpoint modulation in breast cancer.
Proof of concept was demonstrated by combining CSF1R blockade with
PD-1 and CTLA4 inhibitors in a mouse model bearing a mouse pan-
creatic tumor. The combination potently elicited tumor regression,
while PD-1 and CTLA4 inhibitors as single agents showed limited effi-
cacy [78]. The HDACIIa inhibitor TMP195 changed macrophage func-
tion and rescued the inhibitory tumor microenvironment by activating
CTLs in MMTV-PyMT mice [65]. Combining TMP195 with PD-1 anti-
body resulted in tumor shrinkage, which the PD-1 inhibitor alone did
not. This suggests that the immune suppressive environment created by
TAMs induces anti-PD-1 resistance in this model.

Stimulating macrophages via the co-stimulatory CD40 molecule by
agonistic antibodies, resulted in macrophage-mediated tumor regres-
sion in a pancreatic cancer bearing mouse model [79]. Moreover, CD40
stimulation accompanied upregulation of PD-L1 expression on TAMs
[80]. Combining CD40 stimulation and PD-L1 inhibition had synergistic
antitumor effects in mice bearing EMT-6 mammary tumors [80]. This
combination showed also synergistic antitumor effects accompanied by
increased infiltration of dendritic, monocytic and T cells in the HER2/
neu-expressing mammary tumor allograft [81]. Innate immune cells,
such as macrophages, can also be stimulated by pathogen-associated
molecular patterns (PAMPs). An example is BTH1677, a fungal-derived
1,3–1,6 beta-glucan, which increased direct killing of antibody-targeted
tumor cells by macrophages in vitro, through Fcγ receptors and com-
plement receptor 3 (CR3) [82]. BTH1677 also repolarized M2-like to
M1-like TAMs in vitro and enhanced CD4 T cell proliferation and IFN-γ
production [83]. Furthermore, BTH1677 demonstrated synergistic an-
titumor effects with anti-PD-1 and PD-L1 antibodies in a 4 T1 tumor
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bearing mouse model [84].
Overall, macrophage-targeted therapy can augment immune

checkpoint inhibition efficacy in preclinical breast cancer models.
Table 2 summarizes ongoing studies with this combination in patients
with breast cancer.

Current evidence for therapeutic targeting of TAMs in patients
with breast cancer

Based on the tumor-promoting functions of TAMs, several drug in-
terventions are employed in clinical trials. These drugs mainly focus on
repolarizing or depleting TAMs, but also on stimulating anti-tumoral
macrophages.

CSF1-CSF1R inhibition

Several small molecules and antibodies have been developed to
target the CSF1-CSF1R axis, and are or have been evaluated in clinical
trials for solid tumors including breast cancer (Fig. 3; Table 2). These
drugs were well tolerated in phase I trials, also when combined with
paclitaxel [85,86]. Moreover, emactuzumab, a CSF1R-antibody, de-
creased CD163+ TAMs infiltration in serially collected tumor biopsies
of patients with various solid tumors, including breast cancer [86].

CD47-SIRPα inhibition

Several drugs targeting the CD47-SIRPα axis are in early clinical
development (Fig. 3; Table 2). In a phase I trial, intratumoral injection
of TTI-621, a SIRPα-Fc fusion protein, showed tolerability and some

antitumor efficacy in patients with cutaneous T cell lymphoma [87]. In
addition, intravenous administration of fusion protein ALX148 that
binds CD47 is studied in combination with trastuzumab or the PD-1
antibody pembrolizumab (NCT03013218).

CD40 stimulation

CD40 agonistic antibodies are studied in early clinical trials, some of
which also include breast cancer patients (Table 2). Two phase I trials
with selicrelumab, a fully human CD40 agonist monoclonal antibody,
showed tolerability. Partial tumor responses were observed in four and
stable disease in seven of 29 patients in one trial and stable disease was
the best response in the other trial [88,89]. Interestingly, a patient with
advanced pancreatic ductal adenocarcinoma showed a partial response,
with extensive macrophage infiltration in a biopsied lesion after 4 cy-
cles [79]. Selicrelumab plus the Ang-2 and VEGF-A bispecific antibody
vanucizumab or plus emactuzumab is studied in a phase I trial in pa-
tients with breast cancer (Table 2).

CR3 stimulation

BTH1677 has been studied in a randomized phase II study in 90
patients with non-small cell lung cancer. The addition of BTH1677 to
cetuximab, carboplatin, paclitaxel increased objective response rate
from 23.1% to 36.6% [90]. In patients with metastatic triple negative
breast cancer, there is an ongoing phase II study of BTH1677 with
pembrolizumab (NCT02981303). Pharmacodynamic assessment using
multiplex immunohistochemistry on paired biopsies showed repolar-
ization from M2-like to M1-like TAMs upon BTH1677 and

Fig. 3. Macrophage-targeted therapies in
breast cancer. Macrophage-targeted thera-
pies are aimed at activating macrophages’
tumor killing activity, or inhibiting their
recruitment and tumor-promoting func-
tions. Activation of macrophages’ antitumor
activity can be achieved by stimulating the
co-stimulatory receptor CD40, complement
receptor 3 (CR3) and Toll-like receptor 7
(TLR7). These treatment strategies have
been demonstrated to repolarize the tumor-
promoting M2-like tumor-associated mac-
rophages (TAMs) to an antitumor M1-like
phenotype. In addition, blocking the inter-
action between CD47 and signal-regulatory
protein alpha (SIRPα), a ‘don’t eat me’
signal, can enhance macrophages’ phago-
cytic function and thereby improve their
antitumor activity. Inhibition of macro-
phage accumulation within the breast
tumor microenvironment has been demon-
strated to reduce tumor growth and metas-
tasis in preclinical studies. This treatment
strategy includes inhibition of colony sti-
mulating factor 1 (CSF1)-CSF1 receptor
(CSF1R) axis or chemokine (C-C motif) li-
gand 2 (CCL2)-CCL2 receptor (CCR2) axis.
Besides, caspase-8 dependent TRAIL re-
ceptor-mediated monocyte apoptosis in-
duced by a DNA-binding marine alkaloid
trabectedin has also shown to cause TAMs
depletion in tumor microenvironment.
Other macrophage-targeted therapies in
breast cancer include angiopoietin 2
(Ang2)-TIE2 axis inhibition, cycloox-

ygenase-2 (COX-2) inhibition and bisphosphonates. The Ang2-TIE2 signaling mediates angiogenesis and metastasis. Expression of COX-2 in TAMs is essential to
maintain their immunosuppressive function and promote tumor cell proliferation. Bisphosphonates have been widely used in breast cancer. Only preclinical evidence
suggests that bisphosphonates cause TAM apoptosis. This figure was prepared using a template on the Servier medical art website (http://www.servier.fr/servier-
medical-art).
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pembrolizumab treatment [91].

TLR7 stimulation

Imiquimod, a cream for topical administration to treat basal cell
carcinomas, was studied in a prospective phase II trial in 10 patients
with breast cancer skin metastases [92]. Two patients showed a partial
response, which was defined as residual disease less than 50% of ori-
ginal tumor size. In one partial responder, T-cell infiltration increased.
In the other responder, the immunosuppressive environment was re-
versed, with lower levels of IL-6 and IL-10 in the tumor supernatant.
The lower cytokine levels suggest macrophage repolarization, but this
was not studied directly.

In a phase I trial, 10 patients received single imiquimod application
on one skin metastasis and a combination with radiotherapy on another
skin metastasis. Complete response was observed in one-, and partial
response in four of nine patients who received imiquimod only. For the
combination, complete and partial responses were observed in three
and five out of the nine patients, respectively. Imiquimod was tolerated
well, with mostly low grade adverse effects such as dermatitis and pain
[93].

Another TLR7 stimulant 852A, was administrated subcutaneously in
a phase II trial in heavily pretreated patients with recurrent ovarian
(n=10), breast (n=3) and cervical (n=2) cancers [94]. Best re-
sponse was stable disease in two patients. Moreover, unanticipated
toxicities such as myocardial infarction and infection occurred.

CCL2-CCR2 inhibition

Halting CCL2 neutralization accelerated breast cancer metastasis in
a preclinical study [95]. Development of the monoclonal antibody
carlumab against CCL2 in breast cancer was discontinued because of
the lack of clinical efficacy [96]. Other drugs targeting the CCL2-CCR2
axis, like small molecules CCX872-b and BMS-81360 are currently in
phase I-II trials, but they are not including patients with breast cancer
(Table S2).

Ang2-TIE2 inhibition

Several drugs have been designed to target the Ang2-TIE2 axis and
studied in patients with breast cancer (Fig. 3; Table 2). In a randomized
study 228 patients received paclitaxel 90mg/m2 once weekly (3-weeks-
on/1-week-off) and were randomly assigned 1:1:1:1 to also receive
blinded bevacizumab 10mg/kg once every 2 weeks plus either treba-
nanib 10mg/kg once weekly (Arm A) or 3mg/kg once weekly (Arm B),
or placebo (Arm C); or open-label trebananib 10mg/kg once a week
(Arm D). The primary endpoint progression-free survival did not differ
between the treatment arms [97].

In a phase Ib study trebananib (10mg/kg or 30mg/kg) was com-
bined with paclitaxel and trastuzumab in patients (n=20 for each
trebananib dose group) with HER2+ recurrent or metastatic breast
cancer. This combination was tolerable and three out of 17 achieved
complete responses with 30mg/kg compared to none out of 20 at the
10mg/kg dose [98]. So far, Ang2-TIE2 inhibition shows limited clinical
efficacy in patients with breast cancer.

Trabectedin

In TAMs and tumor cells derived from ascitic fluid of ovarian cancer
patients, ex vivo trabectedin treatment reduced TAM viability and in-
flammatory mediators CCL2 and IL-6 production by TAMs and tumor
cells [99]. Furthermore, seven out of nine trabectedin treated patients
with ovarian cancer, showed reduced peripheral monocyte counts [91].
Trabectedin was studied in several phase II trials in patients with me-
tastatic breast cancer. The drug was tolerable with transient and man-
ageable adverse events. Trabectidin 1.3mg/m2 intravenous infusion

every 3 weeks resulted in objective responses in three out of 25 patients
and a progression free survival (PFS) of 3.1 months at a median follow-
up of 7months [100]. Another phase II trial in patients with HER2+
(n=37) or triple negative (n=50) metastatic breast cancer showed
only partial responses in four out of 34 evaluable HER2+ patients with
median PFS of 3.8 months [101].

Commonly used drugs in oncology that may affect macrophages

Bisphosphonates
Bisphosphonates such as zoledronic acid are commonly used in

clinical practice for breast cancer. Accumulating evidence suggests that
macrophages contribute to the antitumor effect of bisphosphonates.
Preclinically bisphosphonates caused apoptosis in macrophage in vitro
[102]. However, the precise effect of bisphosphonates on TAMs in pa-
tients with breast cancer has not yet been studied.

COX-2 inhibition
Selective COX-2 inhibitor celecoxib showed changes in RNA ex-

pression in for example proliferation related genes in pre- and post-
treatment primary tumor material of patients with breast cancer [103].
Interestingly, M1-like macrophage marker HLA-DRα was upregulated
in tumors after treatment with celecoxib, suggesting increased presence
of M1-like macrophages [103]. Antitumor activity of celecoxib in pa-
tients with breast cancer however is disappointing [104]. In a window
of opportunity trial, tumor/stroma response to preoperative celecoxib
will be studied by determining CD68 and CD163 expression in tumor
biopsies before and after celecoxib treatment in patients with primary
invasive breast cancer (NCT03185871).

Other drugs
Despite the preclinical support for a TAM mediated protumor role of

GM-CSF [21], in the clinical setting no evidence was found for a det-
rimental effect of this- or other commonly used growth factors such as
granulocyte colony-stimulating factor.

Taken together, data from early clinical trials in breast cancer pa-
tients are now becoming available. So far, evidence in general shows
limited clinical efficacy.

Conclusions and future perspectives

Collectively, many preclinical studies illustrated the protumor
function of TAMs in breast cancer. TAMs play a role in tumor growth,
progression, treatment resistance and immune suppression. However,
the clinical efficacy of targeting TAMs in breast cancer so far has been
limited. Potential options to improve this include combination strate-
gies. Particularly in view of the immunosuppressive role of TAMs in the
breast cancer microenvironment, results of clinical trials combining
TAM targeting and checkpoint inhibition are eagerly awaited. First
results of anti-CSF1R antibody cabiralizumab and anti-PD-1 antibody
nivolumab combination showed a tolerable safety profile and four
partial responses in 31 patients with advanced pancreatic cancer [105].
Data on clinical efficacy of TAM-targeted therapies in patients with
breast cancer is limited. A careful approach in targeting the total po-
pulation monocytes or macrophages is needed, as for example classical
CD14+CD16−CD33+HLA-DRhi monocytes may be beneficial to obtain
a response to immunotherapy [106]. Also strategies combining TAM-
targeted agents with chemotherapy, radiotherapy or HER2 targeted
drugs may induce synergistic therapeutic effects. Additional macro-
phage-targeted agents, are currently being evaluated in other cancer
types (Table S2).

To improve targeting TAMs, also a number of challenges need to be
addressed. For some targets such as CD47, the effect is probably not
solely mediated by TAMs. Some drugs such as CSF1R tyrosine kinase
inhibitor pexidartinib target more tyrosine kinases, which makes it
difficult to study the contribution of targeting TAMs on its antitumor
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effect [6]. Improving insight in these interactions can potentially im-
prove these intervention strategies. This is of particular importance
when considering for instance resistance to macrophage-targeted
therapy involving cross talk between TAMs and other cells. This was
described in a recent study, demonstrating that tumor-associated fi-
broblasts impaired the antitumor effects of a CSF1R inhibitor [107].
Furthermore, the timing of the anti-TAM treatment may influence re-
sults of TAM targeting treatments, especially regarding combination
strategies. For instance, the increasing awareness of macrophage acti-
vation syndrome after T cell-engaging therapies, which is characterized
by severe immune activation and immune mediated multiple organ
failure, may call for upfront macrophage-directed therapies in this
setting, such as IL-6 blockade [108].

To improve TAM directed therapy, monitoring whole body TAM
dynamics and phenotype upon TAM targeting therapy is crucial.
Techniques such as molecular imaging might provide whole body in-
sight in macrophages populations, heterogeneity (between primary and
metastatic tumors), and pharmacodynamics. This approach has been
tested preclinically using imaging modalities such as a radiolabeled
nanobody PET tracer targeting M2 marker CD206 [109]. Clinically, the
FDA and EMA approved imaging agent Lymphoseek (99mTc-tilmano-
cept) targeting CD206 has been used for lymphatic mapping in sentinel
lymph node biopsy in multiple cancer types, including breast cancer
[110].
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