76 research outputs found
Empirical Bayesian Approach to Testing Multiple Hypotheses with Separate Priors for Left and Right Alternatives
We consider a multiple hypotheses problem with directional alternatives in a decision theoretic framework. We obtain an empirical Bayes rule subject to a constraint on mixed directional false discovery rate (mdFDR≤α) under the semiparametric setting where the distribution of the test statistic is parametric, but the prior distribution is nonparametric. We proposed separate priors for the left tail and right tail alternatives as it may be required for many applications. The proposed Bayes rule is compared through simulation against rules proposed by Benjamini and Yekutieli and Efron. We illustrate the proposed methodology for two sets of data from biological experiments: HIV-transfected cell-line mRNA expression data, and a quantitative trait genome-wide SNP data set. We have developed a user-friendly web-based shiny App for the proposed method which is available through URL https://npseb.shinyapps.io/npseb/. The HIV and SNP data can be directly accessed, and the results presented in this paper can be executed
Empirical Bayesian Approach to Testing Multiple Hypotheses with Separate Priors for Left and Right Alternatives
We consider a multiple hypotheses problem with directional alternatives in a decision theoretic framework. We obtain an empirical Bayes rule subject to a constraint on mixed directional false discovery rate (mdFDR≤α) under the semiparametric setting where the distribution of the test statistic is parametric, but the prior distribution is nonparametric. We proposed separate priors for the left tail and right tail alternatives as it may be required for many applications. The proposed Bayes rule is compared through simulation against rules proposed by Benjamini and Yekutieli and Efron. We illustrate the proposed methodology for two sets of data from biological experiments: HIV-transfected cell-line mRNA expression data, and a quantitative trait genome-wide SNP data set. We have developed a user-friendly web-based shiny App for the proposed method which is available through URL https://npseb.shinyapps.io/npseb/. The HIV and SNP data can be directly accessed, and the results presented in this paper can be executed
The Decay of Disease Association with Declining Linkage Disequilibrium: A Fine Mapping Theorem
Several important and fundamental aspects of disease genetics models have yet to be described. One such property is the relationship of disease association statistics at a marker site closely linked to a disease causing site. A complete description of this two-locus system is of particular importance to experimental efforts to fine map association signals for complex diseases. Here, we present a simple relationship between disease association statistics and the decline of linkage disequilibrium from a causal site. Specifically, the ratio of Chi-square disease association statistics at a marker site and causal site is equivalent to the standard measure of pairwise linkage disequilibrium, r2. A complete derivation of this relationship from a general disease model is shown. Quite interestingly, this relationship holds across all modes of inheritance. Extensive Monte Carlo simulations using a disease genetics model applied to chromosomes subjected to a standard model of recombination are employed to better understand the variation around this fine mapping theorem due to sampling effects. We also use this relationship to provide a framework for estimating properties of a non-interrogated causal site using data at closely linked markers. Lastly, we apply this way of examining association data from high-density genotyping in a large, publicly-available data set investigating extreme BMI. We anticipate that understanding the patterns of disease association decay with declining linkage disequilibrium from a causal site will enable more powerful fine mapping methods and provide new avenues for identifying causal sites/genes from fine-mapping studies
The 5q31 variants associated with psoriasis and Crohn's disease are distinct
Predisposition to psoriasis is known to be affected by genetic variation in HLA-C, IL12B and IL23R, but other genetic risk factors also exist. We recently reported three psoriasis-associated single nucleotide polymorphisms (SNPs) in the 5q31 locus, a region of high linkage disequilibrium laden with inflammatory pathway genes. The aim of this study was to assess whether other variants in the 5q31 region are causal to these SNPs or make independent contributions to psoriasis risk by genotyping a comprehensive set of tagging SNPs in a 725 kb region bounded by IL3 and IL4 and testing for disease association. Ninety SNPs, capturing 86.4% of the genetic diversity, were tested in one case–control sample set (467 cases/460 controls) and significant markers (Pallelic < 0.05) (n = 9) were then tested in two other sample sets (981 cases/925 controls). All nine SNPs were significant in a meta-analysis of the combined sample sets. Pair-wise conditional association tests showed rs1800925, an intergenic SNP located just upstream of IL13 (Mantel–Haenszel Pcombined = 1.5 × 10−4, OR = 0.77 [0.67–0.88]), could account for observed significant association of all but one other SNP, rs11568506 in SLC22A4 [Mantel–Haenszel Pcombined = 0.043, OR = 0.68 (0.47–0.99)]. Haplotype analysis of these two SNPs showed increased significance for the two common haplotypes (rs11568506–rs1800925: GC, Pcombined = 5.67 × 10−6, OR = 1.37; GT, Pcombined = 6.01 × 10−5, OR = 0.75; global haplotype P = 8.93 × 10−5). Several 5q31-region SNPs strongly associated with Crohn's disease (CD) in the recent WTCCC study were not significant in the psoriasis sample sets tested here. These results identify the most significant 5q31 risk variants for psoriasis and suggest that distinct 5q31 variants contribute to CD and psoriasis risk
A gene-based recessive diplotype exome scan discovers \u3cem\u3eFGF6\u3c/em\u3e, a novel hepcidin-regulating iron-metabolism gene
Standard analyses applied to genome-wide association data are well designed to detect additive effects of moderate strength. However, the power for standard genome-wide association study (GWAS) analyses to identify effects from recessive diplotypes is not typically high. We proposed and conducted a gene-based compound heterozygosity test to reveal additional genes underlying complex diseases. With this approach applied to iron overload, a strong association signal was identified between the fibroblast growth factor–encoding gene, FGF6, and hemochromatosis in the central Wisconsin population. Functional validation showed that fibroblast growth factor 6 protein (FGF-6) regulates iron homeostasis and induces transcriptional regulation of hepcidin. Moreover, specific identified FGF6variants differentially impact iron metabolism. In addition, FGF6 downregulation correlated with iron-metabolism dysfunction in systemic sclerosis and cancer cells. Using the recessive diplotype approach revealed a novel susceptibility hemochromatosis gene and has extended our understanding of the mechanisms involved in iron metabolism
A Candidate Gene Approach Identifies the TRAF1/C5 Region as a Risk Factor for Rheumatoid Arthritis
Using a candidate-gene approach, Rene Toes and colleagues identified a novel genetic risk factor for rheumatoid arthritis in theTRAF1/C5 region
A comprehensive review of Tripterygium wilfordii hook. f. in the treatment of rheumatic and autoimmune diseases: Bioactive compounds, mechanisms of action, and future directions
Rheumatic and autoimmune diseases are a group of immune system-related disorders wherein the immune system mistakenly attacks and damages the body’s tissues and organs. This excessive immune response leads to inflammation, tissue damage, and functional impairment. Therapeutic approaches typically involve medications that regulate immune responses, reduce inflammation, alleviate symptoms, and target specific damaged organs. Tripterygium wilfordii Hook. f., a traditional Chinese medicinal plant, has been widely studied in recent years for its application in the treatment of autoimmune diseases, including rheumatoid arthritis, systemic lupus erythematosus, and multiple sclerosis. Numerous studies have shown that preparations of Tripterygium wilfordii have anti-inflammatory, immunomodulatory, and immunosuppressive effects, which effectively improve the symptoms and quality of life of patients with autoimmune diseases, whereas the active metabolites of T. wilfordii have been demonstrated to inhibit immune cell activation, regulate the production of inflammatory factors, and modulate the immune system. However, although these effects contribute to reductions in inflammatory responses and the suppression of autoimmune reactions, as well as minimize tissue and organ damage, the underlying mechanisms of action require further investigation. Moreover, despite the efficacy of T. wilfordii in the treatment of autoimmune diseases, its toxicity and side effects, including its potential hepatotoxicity and nephrotoxicity, warrant a thorough assessment. Furthermore, to maximize the therapeutic benefits of this plant in the treatment of autoimmune diseases and enable more patients to utilize these benefits, efforts should be made to strengthen the regulation and standardized use of T. wilfordii
Neither Replication nor Simulation Supports a Role for the Axon Guidance Pathway in the Genetics of Parkinson's Disease
Susceptibility to sporadic Parkinson's disease (PD) is thought to be influenced by both genetic and environmental factors and their interaction with each other. Statistical models including multiple variants in axon guidance pathway genes have recently been purported to be capable of predicting PD risk, survival free of the disease and age at disease onset; however the specific models have not undergone independent validation. Here we tested the best proposed risk panel of 23 single nucleotide polymorphisms (SNPs) in two PD sample sets, with a total of 525 cases and 518 controls. By single marker analysis, only one marker was significantly associated with PD risk in one of our sample sets (rs6692804: P = 0.03). Multi-marker analysis using the reported model found a mild association in one sample set (two sided P = 0.049, odds ratio for each score change = 1.07) but no significance in the other (two sided P = 0.98, odds ratio = 1), a stark contrast to the reported strong association with PD risk (P = 4.64×10−38, odds ratio as high as 90.8). Following a procedure similar to that used to build the reported model, simulated multi-marker models containing SNPs from randomly chosen genes in a genome wide PD dataset produced P-values that were highly significant and indistinguishable from similar models where disease status was permuted (3.13×10−23 to 4.90×10−64), demonstrating the potential for overfitting in the model building process. Together, these results challenge the robustness of the reported panel of genetic markers to predict PD risk in particular and a role of the axon guidance pathway in PD genetics in general
Circulating methylation level of HTR2A is associated with inflammation and disease activity in rheumatoid arthritis
ObjectivesHTR2A is previously identified as a susceptibility gene for rheumatoid arthritis (RA). In this study, we performed the association analysis between DNA methylation of HTR2A with RA within peripheral blood samples.MethodsWe enrolled peripheral blood samples from 235 patients with RA, 30 osteoarthritis (OA) patients, and 30 healthy controls. The DNA methylation levels of about 218 bp from chr13: 46898190 to chr13: 46897973 (GRCh38/hg38) around HTR2A cg15692052 from patients were analyzed by targeted methylation sequencing.ResultsWe measured methylation status for 7 CpGs in the promoter region of HTR2A and obseved overall methylation status are signficantly increased in RA compared with normal inviduals (FDR= 9.05 x 10-5). The average cg15692052 methylation levels (methylation score) showed a positive correlation with CRP (r=0.15, P=0.023). Compared with the OA group or HC group, the proportion of haplotypes CCCCCCC (FDR=0.02 and 2.81 x 10-6) is signficantly increased while TTTTTCC (FDR =0.01) and TTTTTTT(FDR =6.92 x 10-3) are significantly decreased in RA. We find methylation haplotypes combining with RF and CCP could signficantly enhance the performance of the diagnosing RA and its comorbidities (hypertension, interstitial lung disease, and osteoporosis), especially in interstitial lung disease.ConclusionsIn our study, we found signficant hypermethylation of promoter region of HTR2A which indicates the potential clinical diagnostic role in rheumatoid arthritis
- …