
Marquette University
e-Publications@Marquette
Mathematics, Statistics and Computer Science
Faculty Research and Publications

Mathematics, Statistics and Computer Science,
Department of (-2019)

8-1-2018

Empirical Bayesian Approach to Testing Multiple
Hypotheses with Separate Priors for Left and Right
Alternatives
Naveen K. Bansal
Marquette University, naveen.bansal@marquette.edu

Mehdi Maadooliat
Marquette University, mehdi.maadooliat@marquette.edu

Steven J. Schrodi
University of Wisconsin-Madison

Published version. Statistical Applications in Genetics and Molecular Biology, Vol. 17, No. 4 (August
2018). DOI. © 2018 by Walter de Gruyter GmbH. Ised with permission

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by epublications@Marquette

https://core.ac.uk/display/213087954?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://epublications.marquette.edu
https://epublications.marquette.edu/mscs_fac
https://epublications.marquette.edu/mscs_fac
https://epublications.marquette.edu/mscs
https://epublications.marquette.edu/mscs
https://doi.org/10.1515/sagmb-2018-0002


Au
to

m
at

ica
lly

ge
ne

ra
te

d
ro

ug
h

PD
Fb

yP
ro

of
Ch

ec
kf

ro
m

Ri
ve

rV
al

le
yT

ec
hn

ol
og

ie
sL

td
DE GRUYTER Statistical Applications in Genetics and Molecular Biology. 2018; 20180002

Naveen K. Bansal1 / Mehdi Maadooliat1,2 / Steven J. Schrodi2

Empirical Bayesian approach to testing multiple
hypotheses with separate priors for left and right
alternatives
1 Department of Mathematics, Statistics, and Computer Sciences, Marquette University, Milwaukee, WI 53201-1881, USA, E-

mail: mehdi@mscs.mu.edu. http://orcid.org/0000-0002-5408-2676.
2 Center for Human Genetics, Marshfield Clinic Research Institute, Marshfield, WI 54449, USA, E-mail: mehdi@mscs.mu.edu.

http://orcid.org/0000-0002-5408-2676.

Abstract:
We consider a multiple hypotheses problem with directional alternatives in a decision theoretic framework.
We obtain an empirical Bayes rule subject to a constraint on mixed directional false discovery rate (mdFDR≤α)
under the semiparametric setting where the distribution of the test statistic is parametric, but the prior distri-
bution is nonparametric. We proposed separate priors for the left tail and right tail alternatives as it may be
required for many applications. The proposed Bayes rule is compared through simulation against rules pro-
posed by Benjamini and Yekutieli and Efron. We illustrate the proposed methodology for two sets of data from
biological experiments: HIV-transfected cell-line mRNA expression data, and a quantitative trait genome-wide
SNP data set. We have developed a user-friendly web-based shiny App for the proposed method which is avail-
able through URL https://npseb.shinyapps.io/npseb/. The HIV and SNP data can be directly accessed, and
the results presented in this paper can be executed.
Keywords: directional alternatives, EM algorithm, false discovery rates, HIV, SNP
DOI: 10.1515/sagmb-2018-0002

1 Introduction

Many genetics and molecular/cellular biology studies require multiple hypothesis testing with directional al-
ternatives, where, for example, the left directional and the right directional are associated with gene down-
regulation and up-regulation, respectively. A traditional way to solve this problem is to use a two-sided test
procedure with threshold determined based on a controlled error rate and the directional decision made based
on the sign of the test statistics. This procedure is generally optimal under various directional false discov-
ery rates (DFDRs) if the left and right directional alternatives are equally likely (Shaffer 2002). However, this
assumption may not be satisfied for many biological applications. For example, a gene mutation (either exper-
imental or natural) may result in more genes under-expressed than over-expression due to suppression of one
more key regulatory genes. In addition, the pathways of under-expressed and over-expressed genes may be
different. In such a case, considering separate priors for the left and right tails alternatives will be reasonable.

The problem can be described in terms of parameters θi, i = 1, 2, …, m, as the directional hypotheses

𝐻(0)
𝑖 ∶ 𝜃𝑖 = 0 vs. 𝐻(−1)

𝑖 ∶ 𝜃𝑖 < 0 or 𝐻(1)
𝑖 ∶ 𝜃𝑖 > 0, 𝑖 = 1, 2, … 𝑚. (1)

Suppose, θis, i = 1, 2, …, m, are assumed to be generated from

𝜋(𝜃𝑖) = 𝑝−𝜋−(𝜃𝑖) + 𝑝0𝐼(𝜃𝑖 = 0) + 𝑝+𝜋+(𝜃𝑖), (2)

where p− + p0 + p+ = 1, and π−(θ) and π+(θ) are densities with supports (−∞, 0) and (0, ∞), respectively. Note
that prior (2) can be interpreted as 𝑝− = Pr(𝐻(−1)

𝑖 ), 𝑝+ = Pr(𝐻(1)
𝑖 ), 𝑝0 = Pr(𝐻(0)

𝑖 ), 𝜋−(𝜃𝑖) = 𝜋(𝜃𝑖|𝐻(−1)
𝑖 ), and

𝜋+(𝜃𝑖) = 𝜋(𝜃𝑖|𝐻(1)
𝑖 ).

Mehdi Maadooliat is the corresponding author.
©2018 Walter de Gruyter GmbH, Berlin/Boston.
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Bansal et al. DE GRUYTER

The idea behind prior (2) is that it allows, under the non-null case, some components as negatively affected
and some as positively affected, and it also allows separate priors for the positive and negatively affected compo-
nents with non-symmetry controlled by p− and p+. This phenomenon occurs in many genetic studies where, un-
der the influence of an external factor, some genes may be up-regulated and some may be down-regulated, and
down-regulation may be more prevalent than up-regulation or vice versa. Consider, for example, the HIV data
described in van’t Wout et al. (2003). In this study, Van’t Wout and colleagues measured, through a cDNA array,
the mRNA expression changes in established cell lines during infection with HIV in vitro, compared to mRNA
preparation from the cell lines under control conditions. The tranfection of HIV virus mediates differential
expression of several host genes, some of which are up-regulated and others down-regulated. The regulatory
impact of the HIV transfection is dependent upon disparate molecular mechanisms–host genes overexpressed
following transfection may result from the activation of immunological defense pathways (e.g. upregulation of
interferon-encoding genes in dendritic cells), whereas some genes involved in steroid and fatty acid biosynthe-
sis may exhibit suppressed expression levels. Additionally, expression of cell surface proteins are known to be
modified by HIV infection. Hence, a separate priors are required for up-regulated and down-regulated genes
with a higher number of genes down-regulated than up-regulated. In that case, one would have p− > p+. We
will analyze this data under the prior (2) with p−, π−(θ), p+, and π+(θ) estimated from the data itself. Note that
frequentist’s approach to this problem assumes equal weight to up-regulated and down-regulated genes as the
direction of the selected genes are determined by the signs of the test statistics; see Benjamini and Yekutieli
(2005). The proposed methodology gives different weights. We will demostrate that this approach produces
more powerful rules.

Another example, we consider, is concerning genome-wide SNP data. To study the genetic architecture of
body fat distribution, Shungin et al. (2015) performed a large-scale genome-wide association study in an ef-
fort to identify SNPs with genotypes significantly correlated with waist-to-hip ratio. Following standard QC
procedures used in genome-wide association studies, the statistical test employed by the authors was a linear
regression model, adjusted for confounding covariates. The genotypes are positively or negatively correlated
depending upon whether the minor allele genotype increases or decreases the waist-to-hip phenotype. As rare
alleles carry higher probabilities of conferring dysfunction in both the regulation and function of genes com-
pared to alleles segregating at higher frequencies in the population, it is unreasonable to assume that the non-
null SNPs will be symmetrically distributed in their effects on phenotypes. We will analyze this data using
prior (2) with parameters of the prior estimated from the data itself.

Both of these examples demand that the left-tailed and right-tailed θis should not be symmetrically dis-
tributed, and separate priors must be assigned to left and right tails.

Variety of procedures on Bayesian decision theoretic based multiple testing have been proposed in the liter-
ature over the past decade (see, e.g. Do, Muller & Tang, 2005; Muller, Parmigiani & Rice, 2006; Bogdan, Ghosh
& Tokdar, 2008), but there is no systematic method to incorporate the unequal prior weights for the alternative
tails. In this work, by considering free priors for left-tailed and right-tailed θis, we can extract the non-symmetric
distribution for the non-null θis. As a consequence, we claim that the proposed Bayes solution yields better
power of true discoveries.

In Section 2, we discuss briefly the Bayesian decision theoretic methodology. The details can be found in
Bansal and Miescke (2013) and Bansal, Hamedani, and Maadooliat (2016). In Section 3, we develop empirical
Bayesian methodology and discuss how to estimate the parameters (p−, p0, p+), σ2, and the nonparametric
densities. A simulation study comparing the proposed rules against rules proposed by Benjamini and Yekutieli
(2005) and Efron (2007a, 2007b), and Bansal, Hamedani, and Maadooliat (2016) are presented in Section 4.
Analyses of HIV and genome-wide SNP, and miroRNA data sets are presented in Section 5. We end with some
concluding remarks in Section 6.

2 Bayesian decision theoretic methodology

Let d = (d1, d2, …, dm) with di ∈ {−1, 0, 1} denote a selection rule, where di = −1 means that 𝐻(−1)
𝑖 is selected,

di = 0 means 𝐻(0)
𝑖 is selected, and di = 1 means 𝐻(+1)

𝑖 is selected. Let u = (u1, u2, …, um) be the vector of true
hypotheses defined similarly, i.e. ui = −1 if θi < 0, ui = 0 if θi = 0, and ui = +1 if θi > 0. Consider the loss

𝐿(𝜃𝜃𝜃, 𝑑) =
𝑚

∑
𝑖=1

𝐿𝑖(𝜃𝑖, 𝑑𝑖), (3)

where Li is an individual loss for the ith component, and θ = (θ1, θ2, …, θm). If the loss is a “0-1” loss, then (3)
will be
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DE GRUYTER Bansal et al.

𝐿0(𝜃𝜃𝜃, 𝑑) =
𝑚

∑
𝑖=1

1
∑

𝑗=−1
𝐼(𝑑𝑖 = 𝑗)𝐼(𝑢𝑖 ≠ 𝑗),

where function I(·) denotes the indicator function. Note that the “0-1” loss yields the number of false discov-
eries and the number of false non-discoveries. Thus, minimizing the expected loss would yield the minimum
number of expected false discoveries and expected false non-discoveries. If an objective is to also control false
discoveries, then appropriate control can be imposed as we illustrate below.

Let the observed data X∼P(x; θ, η), where η denotes the set of all nuisance parameters including nonpara-
metric components. The Bayes rule can be obtained by minimizing the posterior expected loss. Define,

𝑣(−1)
𝑖 = 𝑃(𝐻(−1)

𝑖 |𝑥𝑥𝑥), 𝑣(0)
𝑖 = 𝑃(𝐻(0)

𝑖 |𝑥𝑥𝑥), and 𝑣(1)
𝑖 = 𝑃(𝐻(+1)

𝑖 |𝑥𝑥𝑥).

Since the posterior expected loss for the “0-1” loss is 𝐸[𝐿0(𝜃, 𝑑)|𝑥] = ∑ ∑𝑖,𝑗 𝐼(𝑑𝑖 = 𝑗)(1 − 𝑣(𝑗)
𝑖 ), it is easy to see

that the Bayes rule, for all i, selects according to maximum of {𝑣(𝑗)
𝑖 , 𝑗 = −1, 0, 1}.

If x = (x1, x2, …, xm) with xi∼f (x|θi), i = 1, 2, …, m independently distributed, then

𝑣(−1)
𝑖 = 𝑝−𝑓−(𝑥𝑖)

𝑓 (𝑥𝑖)
, 𝑣(1)

𝑖 = 𝑝+𝑓+(𝑥𝑖)
𝑓 (𝑥𝑖)

, 𝑣(0)
𝑖 = 𝑝0𝑓0(𝑥𝑖)

𝑓 (𝑥𝑖)
, (4)

where,

𝑓−(𝑥) = ∫
0

−∞
𝑓 (𝑥|𝜃)𝜋−(𝜃)𝑑𝜃, 𝑓+(𝑥) = ∫

∞

0
𝑓 (𝑥|𝜃)𝜋+(𝜃)𝑑𝜃, 𝑓0(𝑥) = 𝑓 (𝑥|0) (5)

and f (xi) = p−f −(xi) + p+f +(xi) + p0f 0(xi). Since, maximizing 𝑣(0)
𝑖 , 𝑣(−1)

𝑖 , 𝑣(1)
𝑖 is equivalent to maximizing p0f 0(x),

p−f −(x), and p+f +(x), the Bayes rule can be described as follows:
Reject 𝐻(0)

𝑖 if

𝑇−(𝑥𝑖) = ∫
0

−∞

𝑓 (𝑥𝑖|𝜃)
𝑓 (𝑥𝑖|0)

𝜋−(𝜃)𝑑𝜃 > 𝑝0
𝑝−

, 𝑇+(𝑥𝑖) = ∫
∞

0

𝑓 (𝑥𝑖|𝜃)
𝑓 (𝑥𝑖|0)

𝜋+(𝜃)𝑑𝜃 > 𝑝0
𝑝+

. (6)

When 𝐻(0)
𝑖 is rejected, select 𝐻(−1)

𝑖 or 𝐻(1)
𝑖 according to the maximum of p−f −(x) and p+f +(x). Otherwise, select 𝐻(0)

𝑖 .
If f (x|θ) holds the MLR property, which we assume throughout the paper, then it is easy to see that T−(x) is

a monotonically decreasing function, and T+(x) is a monotonically increasing function. Then (6) can be written
as

𝑥𝑖 < 𝑇−1
− ( 𝑝0

𝑝−
) and 𝑥𝑖 > 𝑇−1

+ ( 𝑝0
𝑝+

) . (7)

As an example, when f (x|θ) is normal density, π+ and π− are standard half-normal distribution, and when (p−,
p0, p+) = (0.15, 0.80, 0.05), then (7) yields xi < −1.31 and xi > 1.94. Note, here, an asymmetric structure of the
Bayes rule.

The above unconstrained Bayes rule does not necessarily control a false discovery rate. However, in practice,
it is important that a decision rule controls a false discovery rate so that, whenever left or right discoveries
are made, one would have confidence in those discoveries. This can be achieved by minimizing the posterior
expected loss subject to a constraint on a false discovery rate. Since, we are interested in directional discoveries,
we use mixed directional false discovery rate (mdFDR), which is defined as (see, Benjamini and Yekutieli 2005)

mdFDR = 𝐸 ⎡⎢
⎣

∑𝑚
𝑖=1{𝐼(𝑑𝑖 = −1)𝐼(𝑢𝑖 = 0, 1) + 𝐼(𝑑𝑖 = +1)𝐼(𝑢𝑖 = −1, 0)}

(|𝐷−| + |𝐷+|) ∨ 1
⎤⎥
⎦

, (8)

where D∓ is the set of indices of selected 𝐻(∓1)
𝑖 𝑠, |·| denotes the cardinality of the set, and the expectation is

with respect to both X and θ. The posterior version of mdFDR is
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mdPFDR = 1 −
∑𝑚

𝑖=1{𝐼(𝑑𝑖 = −1)𝑣(−1)
𝑖 + 𝐼(𝑑𝑖 = +1)𝑣(1)

𝑖 }
(|𝐷−| + |𝐷+|) ∨ 1

. (9)

Thus, the problem now is to find the Bayes rule that minimizes 𝐸[𝐿0(𝜃, 𝑑)|𝑥] = 𝑚 − ∑𝑖 ∑𝑗 𝐼(𝑑𝑖 = 𝑗)𝑣(𝑗)
𝑖 subject

to the constraint mdPFDR≤α. We call this rule as a constrained Bayes rule. As described in Bansal and Miescke
(2013), this can be achieved as follows:

Let 𝐷(−1)
𝐵 = {𝑖 ∶ 𝑣(−1)

𝑖 > 𝑣(1)
𝑖 , 𝑣(0)

𝑖 }, and 𝐷(1)
𝐵 = {𝑖 ∶ 𝜈(1)

𝑖 > 𝜈(−1), 𝜈(0)} be the sets of indices of the selected
𝐻(−1)

𝑖 𝑠 and 𝐻(1)
𝑖 𝑠 under the unconstrained Bayes rule, respectively. Define 𝜉𝑖 = 𝑣(−1)

𝑖 for 𝑖 ∈ 𝐷(−1)
𝐵 , and 𝜉𝑖 = 𝜈(1)

𝑖
for 𝑖 ∈ 𝐷(1)

𝐵 , and then rank all 𝜉𝑖, 𝑖 ∈ 𝐷(−1)
𝐵 ∪ 𝐷(1)

𝐵 from the lowest to the highest. Let the ranked values be
denoted by 𝜉[1] ≤ 𝜉[2] ≤ … ≤ 𝜉[�̂�], where ̂𝑘 = |𝐷(−1)

𝐵 ∪ 𝐷(1)
𝐵 |. Denote

̂𝑖0 = max
⎧{
⎨{⎩

𝑗 ≤ ̂𝑘 ∶ 1𝑗

𝑗
∑
𝑖=1

𝜉[�̂�−𝑖+1] ≥ 1 − 𝛼
⎫}
⎬}⎭

. (10)

Let Dξ denotes the set of indices corresponding to 𝜉[�̂�] ≥ 𝜉[�̂�−1] ≥ ⋯ ≥ 𝜉[�̂�− ̂𝑖0+1]. Now select 𝐻(−1)
𝑖 for 𝑖 ∈

𝐷(−1)
𝐵 ∩ 𝐷𝜉 , and 𝐻(1)

𝑖 for 𝑖 ∈ 𝐷(1)
𝐵 ∩ 𝐷𝜉 .

3 Empirical Bayes rule with nonparametric alternatives

We first discuss the estimation of the nonparametric components. When f (x|θ) belongs to a location family, the
estimation of π− and π+ can be obtained through deconvolution methods as described in Lee et al. (2010, 2013),
and van Es, Gugushvili, and Spreij (2008). However, our Bayesian methodology described in Section 2 does not
require the direct estimation of π− and π+. All we need are the estimations of 𝑣(−1)

𝑖 , 𝑣(0)
𝑖 , and 𝑣(1)

𝑖 as defined in
(4), which involve p−, p0, p+, f −(x), f 0(x), and f +(x). Note that the observations xi, i = 1, 2, …, m are marginally
distributed with the mixture density f (x) = p−f −(x) + p+f +(x) + p0f 0(x). This mixture density cannot be treated
as a regular mixture of three distributions since f −(x), f +(x), and f 0(x) have specific characteristics. Before we
discuss an estimation approach, we want to make a note that f −(x), f +(x), and f 0(x) are uniquely represented
in the mixture density of f (x). Due to MLR property of f (x|θ), as discussed in Section 2, f −(x)/f 0(x) (say h−(x))
is a decreasing function of x, and f +(x)/f 0(x) (say h+(x)) is an increasing function of x. This implies that f −(x) =
f 0(x)h−(x) and f +(x) = f 0(x)h+(x) are distinct and different from f 0(x). Thus, f −(x), f +(x), and f 0(x) in the mixture
density of f (x) are uniquely characterized.

We use a discretized approach of Lee et al. (2013) by discretizing π+(θ) (and similarly π−(θ)) at the equally
spaced points {h, 2h, 3h, …, Bh}, where the bandwidth h > 0 and the number of bins B are appropriately deter-
mined. Thus, we consider

𝜋(𝜃) ≈ 𝑝0𝐼(𝜃 = 0) + 𝑝−
𝐵

∑
𝑘=1

𝜔−1,𝑘𝐼(𝜃 = −𝑘ℎ) + 𝑝+
𝐵

∑
𝑘=1

𝜔1,𝑘𝐼(𝜃 = 𝑘ℎ),

where ∑ 𝜔−1,𝑘 = ∑ 𝜔1,𝑘 = 1. Note that we could have taken different bandwidths h and different number
of bins B for π−(θ) and π+(θ), but that would make computation difficult when applying AIC criterion. Since,
the AIC picks the highest possible B based on the observed data, the magnitudes of the weights ω−1,k and ω1,k
would still reflect the nature of π−(θ) and π+(θ), respectively.

To describe the empirical Bayesian methodology, for simplicity, we will assume that the observed Xi|θi ∼
N(θi, σ2); however, the methodology described below can be applied to any location-scale family. In addition,
we also assume that Xi, i = 1, 2, …, m are independently distributed. Thus, the observed Xi, i = 1, 2, …, m are
i.i.d. with marginal density approximated by

𝑓 (𝑥) ≈ 𝑝0
1
𝜎 𝜙 ( 𝑥

𝜎 ) + 𝑝−
𝐵

∑
𝑘=1

𝜔−1,𝑘
1
𝜎 𝜙 (𝑥 + 𝑘ℎ

𝜎 ) + 𝑝+
𝐵

∑
𝑘=1

𝜔1,𝑘
1
𝜎 𝜙 (𝑥 − 𝑘ℎ

𝜎 ) .

We now use the EM algorithm to estimate (p0, p−, p+), σ2, and weights ωj,k, k = 1, 2, …, B, j = −1, 1.

4
Brought to you by | North Carolina State University (NCSU) Libraries

Authenticated
Download Date | 11/7/18 2:00 PM



Au
to

m
at

ica
lly

ge
ne

ra
te

d
ro

ug
h

PD
Fb

yP
ro

of
Ch

ec
kf

ro
m

Ri
ve

rV
al

le
yT

ec
hn

ol
og

ie
sL

td
DE GRUYTER Bansal et al.

Let ( ̂𝑝(𝑟−1)
0 , ̂𝑝(𝑟−1)

− , ̂𝑝(𝑟−1)
+ ), �̂�(𝑟−1), and �̂�(𝑟−1)

𝑗,𝑘 , 𝑗 = −1, 1, 𝑘 = 1, 2, … , 𝐵 be the estimates from the rth itera-
tion (r ≥ 1). Denote

̂𝑝(𝑟)
0𝑖 =

̂𝑝(𝑟−1)
0 𝜙( 𝑥𝑖

�̂�(𝑟−1) )
�̂�(𝑟−1)(𝑥𝑖)

, ̂𝑝(𝑟)
(−)𝑘𝑖 =

̂𝑝(𝑟−1)
− �̂�(𝑟−1)

−1,𝑘 𝜙(𝑥𝑖+𝑘ℎ
�̂�(𝑟−1) )

�̂�(𝑟−1)(𝑥𝑖)
,

̂𝑝(𝑟)
(+)𝑘𝑖 =

̂𝑝(𝑟−1)
+ �̂�(𝑟−1)

1,𝑘 𝜙(𝑥𝑖−𝑘ℎ
�̂�(𝑟−1) )

�̂�(𝑟−1)(𝑥𝑖)
,

where,

�̂�(𝑟−1)(𝑥𝑖) = ̂𝑝(𝑟−1)
0 𝜙 ( 𝑥𝑖

�̂�(𝑟−1) )

+
𝐵

∑
𝑘=1

[ ̂𝑝(𝑟−1)
− �̂�(𝑟−1)

−1,𝑘 𝜙 (𝑥𝑖 + 𝑘ℎ
�̂�(𝑟−1) ) + ̂𝑝(𝑟−1)

+ �̂�(𝑟−1)
1,𝑘 𝜙 (𝑥𝑖 − 𝑘ℎ

�̂�(𝑟−1) )] .

Following the standard E-step and M-step, the EM algorithm yields the following estimates

̂𝑝(𝑟)
0 = 1

𝑚
𝑚

∑
𝑖=1

𝑝(𝑟)
0𝑖 , ̂𝑝(𝑟)

− = 1
𝑚

𝑚
∑
𝑖=1

𝐵
∑
𝑘=1

̂𝑝(𝑟)
(−)𝑘𝑖, ̂𝑝(𝑟)

+ = 1
𝑚

𝑚
∑
𝑖=1

𝐵
∑
𝑘=1

̂𝑝(𝑟)
(+)𝑘𝑖,

�̂�(𝑟)
−1,𝑘 =

∑𝑚
𝑖=1 ̂𝑝(𝑟)

(−)𝑘𝑖

∑𝑚
𝑖=1 ∑𝐵

�̃�=1 ̂𝑝(𝑟)
(−)�̃�𝑖

, �̂�(𝑟)
1,𝑘 =

∑𝑚
𝑖=1 ̂𝑝(𝑟)

(+)𝑘𝑖

∑𝑚
𝑖=1 ∑𝐵

�̃�=1 ̂𝑝(𝑟)
(+)�̃�𝑖

and

�̂�2(𝑟) = 1
𝑚

𝑚
∑
𝑖=1

⎡⎢
⎣

̂𝑝(𝑟)
0𝑖 𝑥2𝑖 +

𝐵
∑
𝑘=1

̂𝑝(𝑟)
(−)𝑘𝑖(𝑥𝑖 + 𝑘ℎ)2 +

𝐵
∑
𝑘=1

̂𝑝(𝑟)
(+)𝑘𝑖(𝑥𝑖 − 𝑘ℎ)2⎤⎥

⎦
.

A higher value of B (and a smaller h) would amount to overfitting. As discussed in Lee et al. (2013), this can be
resolved by maximizing the likelihood function subject to a penalty function, where a higher penalty is assigned
for overfitting. We use the AIC criterion,

AIC(𝐵) = 2
𝑚

∑
𝑖=1

log ̂𝑓 (𝑥𝑖) − 2(2𝐵 + 2),

by maximizing AIC(B) with respect to B. Note that (2B + 2) is the number of parameters, and ̂𝑓 (𝑥) = ̂𝑝− ̂𝑓−(𝑥) +
̂𝑝0 ̂𝑓0(𝑥) + ̂𝑝+ ̂𝑓+(𝑥), where ̂𝑓0(𝑥) = 1

�̂� 𝜙 ( 𝑥
�̂� ) , and the estimates ̂𝑓+(𝑥) and ̂𝑓−(𝑥) are given by

̂𝑓+(𝑥) =
𝐵

∑
𝑘=1

�̂�−1,𝑘
1
�̂� 𝜙 (𝑥 − 𝑘ℎ

�̂� ) , and ̂𝑓−(𝑥) =
𝐵

∑
𝑘=1

�̂�1,𝑘
1
�̂� 𝜙 (𝑥 + 𝑘ℎ

�̂� ) (11)

Note that the value h depends on B, which can be chosen in such a way that the left end distribution N(−Bh,
�̂�2) covers the lowest observed value x[1], and the right end distribution N(Bh, �̂�2) covers the largest observed
value x[m]. For example, h can be the smallest value such that 𝑥[𝑚] < 𝐵ℎ + 3�̂� , and 𝑥[1] > −𝐵ℎ − 3�̂� .

Once, we have estimates of (p−, p0, p+),π−,π+, and σ, the empirical Bayes rule can be obtained by the Bayesian
methodology developed in Section 2 using these estimates. For example, it is easy to see from (6) that

�̂�−(𝑥) =
𝐵

∑
𝑘=1

�̂�−1,𝑘𝜙 (𝑥 + 𝑘ℎ
�̂� ) /𝜙 ( 𝑥

�̂� ) , and �̂�+(𝑥) =
𝐵

∑
𝑘=1

�̂�1,𝑘𝜙 (𝑥 − 𝑘ℎ
�̂� ) /𝜙 ( 𝑥

�̂� ) ,

and
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̂𝑣(−1)
𝑖 = ̂𝑝−�̂�−(𝑥𝑖)

̂𝑝0 + ̂𝑝−�̂�−(𝑥𝑖) + ̂𝑝+�̂�+(𝑥𝑖)
, ̂𝑣(1)

𝑖 = ̂𝑝+�̂�+(𝑥𝑖)
̂𝑝0 + ̂𝑝−�̂�−(𝑥𝑖) + ̂𝑝+�̂�+(𝑥𝑖)

,

and ̂𝑣(0)
𝑖 = 1 − ̂𝑣(−1)

𝑖 − ̂𝑣(1)
𝑖

As shown in Lee et al. (2013), the estimated parameters and estimated densities will be consistent as m→∞.
Since, in applications dealing with high dimensional multiple hypothesis problems, m is likely to be very large
(in thousands), the proposed empirical Bayes procedure is likely to be closed to the Bayes optimal.

Remark 2:
Note that the above methodology is dictated by the weights �̂�−1,𝑘 and �̂�1,𝑘. If suppose the weights are

negligible on the left and right extremes, then there will be few instances (x values) when �̂�−(𝑥) and �̂�+(𝑥)
will cross the threshold values. On the other hand, if the weights are high on the left and right extremes, there
will be many instances when �̂�−(𝑥) and �̂�+(𝑥) will cross the threshold values. The weights can also be used to
determine the pattern of the discovered components if there is any visible pattern in the weights. For example,
a bimodal pattern in {ω−1,k, k = 1, 2, …, B} or in {ω1,k, k = 1, 2, …, B} would be an indication two sets of clusters
of the discovered components.

4 Monte Carlo simulations

In this section, we compare the performance of the proposed nonparametric empirical Bayes procedure (NPB)
with the directional procedure (BY) proposed by Benjamini and Yekutieli (2005), a local false discovery rate
(LFDR) rule proposed by Efron (2007a,b), and a skew normal Bayes rule (SNB) proposed by Bansal, Hamedani,
and Maadooliat (2016). Note that BY and LFDR are nonparametric procedures against the choice of alternative
priors. SNB procedure was developed under the skew normal alternative prior; however, it may be interesting
to see its performance when the true alternative prior is not skew normal. In order to consider the robustness
against different types of alternative priors, we simulate the test statistics zi∼N(θi, 1), i = 1, 2, …, m with [mp0]
of θi = 0 and the remaining m − [mp0] of θis generated from set of distributions as described below.

In the setups below, we use γ− = p−/(1−p0) and γ+ = p+/(1−p0) which are the expected proportions of
rejected nulls belonging to the left and right tails, respectively, and denote πγ = γ−π−(θ) + γ+π+(θ) as the prior
under the alternative.

• Setup 1:

MSN.𝑗 ∶ mixture of 2𝑗 skew normals 𝛾−

𝑗
∑
𝑘=1

SN(−𝑘𝜉 , 𝜎2, 𝜆) + 𝛾+
𝑖

∑
𝑘=1

SN(𝑘𝜉 , 𝜎2, 𝜆)

For the definition and concept of skew normal distribution, see Azzalini (1985). We present the results for
this setup in the online Supplementary Materials

• Setup 2:

⎧{
⎨{⎩

MN ∶ mixture of normals 𝛾− ⋅ 𝑁(−𝜇, 𝜎2
1 ) + 𝛾+ ⋅ 𝑁(𝜇, 𝜎2

1 ),
SDE ∶ shifted double exponential 𝛾− ⋅ 𝜆𝑒𝜆(𝑦+1)𝐼(−∞, − 1) + 𝛾+ ⋅ 𝜆𝑒−𝜆(𝑦−1)𝐼(1, ∞),
SN ∶ skew normal SN(0, 𝜎2

2 , 𝜂).
�

Throughout this simulation study, we assume μ = 2, λ = σ1 = 1, σ2 = 2.5 and consider different combinations
of p0 and (γ−, γ+) from the following ranges: p0 = 0.8, 0.9, 0.95, and (γ−, γ+) = (0.15, 0.85), (0.3, 0.7), (0.5, 0.5),
(0.7, 0.3), (0.85, 0.15). For the skew normal alternatives, the shape parameter η is chosen in a way as to match
the associated weights (γ−, γ+). In other word, the shape parameter η satisfies the following relationships:

∫
0

−∞
𝑓SN(𝑥|𝜂)𝑑𝑥 = 𝛾− and ∫

∞

0
𝑓SN(𝑥|𝜂)𝑑𝑥 = 𝛾+,

where f SN(x|η) is the probability density function of the SN(0, 𝜎2
2 , 𝜂). For the above setting of (γ−, γ+),

the values of η are η = 1.96, 0.73, 0, −0.73, −1.96, respectively. Figure 1 illustrates the distributions of the
generating models for p0 = 0.8 and (γ−, γ+) = (0.15, 0.85).
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DE GRUYTER Bansal et al.

Figure 1: Graph of the null distribution and three choices for alternatives, mixture of normal (MN), shifted double expo-
nential (SDE), and skew normal (SN) for p0 = 0.8, and (γ−, γ+) = (0.15, 0.85).

From each of the above combinations, we simulate 100 datasets with m = 10,000. Empirical estimates of the
parameters were obtained first, and AIC criterion was used to determine the optimal B. The empirical estimates
were then plugged in for the parameters before applying the algorithm discussed in Section 2 to obtain the
empirical Bayes rule.

Benjamini and Yekutieli’s procedure (BY) is performed using p-values based on zi and the the direction
of the alternative determine by sign of zi as described in their paper. LFDR procedure is based on the local
false discovery rate with null hypothesis rejected if LFDR(zi) < 0.20 as suggested by Efron, and the direction
of the alternative determined by the sign of zi. For SNB procedure, parameters of skew normal alternative
are estimated first before applying the procedure proposed in Bansal, Hamedani, and Maadooliat (2016). For
comparison, we use the following two measurements:

a. Correct Discovery: The mean number of correct discoveries observed in the simulations. To avoid potential
confusion with averaging over number of the hypotheses, m, we refer to this measurement as the expected
number of correct discoveries.

b. False Discovery Rate: The expected ratio of false discoveries to the total number of discoveries.

To compare the procedures in left (right) directions, we further consider the expected number of correct left
(right) discoveries and the expected rate of false left (right) discoveries. Figure 2 represents the aforementioned
measurements for different values of p0 = (0.8, 0.9, 0.95), γ− = (0.15, 0.3, 0.5, 0.7, 0.85) and the generating model
SDE. Expected number of right discoveries and the expected rate of false right discoveries are not presented
since they can be interpreted from the results of the left discoveries. Similar Figures associated to other two
generating models (MN and SN) can be found in the Supplementary Materials.
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Figure 2: Comparison of the discoveries for the proposed nonparametric procedure (NPB) and the BY, SNB and LFDR
procedures: (A) mixed directional false discovery rates (mdFDR), (B) false left discovery rate, (C) expected number of
correct discoveries, (D) expected number of correct left discoveries.

Figure 2 shows that, overall, the results of the proposed Empirical Bayes rule NPB is superior to BY, LFDR,
and SNB procedures for the shifted double exponential alternative prior as the parameters (γ−, γ+) departs from
(0.5, 0.5). There are higher number of correct discoveries by NPB with false discovery rate close to pre-assigned
rate of 0.05. Note that the mdFDR and expected number of correct discoveries for BY are flat with varying (γ−,
γ+). The mdFDR for LFDR procedure is lower than 0.05 for smaller p0 values, however, it approached 0.05 as
p0 approaches 1. The figures for left discoveries show a gain made in expected number of correct discoveries
when γ− is greater than 0.5 while keeping the false left discovery rates comparable with the BY procedure. Note
also that the false left discovery rates are much higher under BY rule for smaller γ−.

We see the same pattern for MN and SN priors (see the supplementary material). The advantage of the
proposed NPB procedure is more prominent as (γ−, γ+) gets further away from (0.5, 0.5). In addition to this, we
also tried mixture of skew normal priors with number of mixtures of 2, 4, and 6. For details, see the Supple-
mentary Materials. This clearly shows an optimal robustness of the proposed NPB procedure in the sense that
NPB allows a high number of correct discoveries subject to the constraint of mdFDR ≤ 0.05 irrespective of the
alternative prior as if it possesses a skewness.

For further illustration, we compare the performance of the NPB, LFDR, SNB, and BY procedures in Table
1 based on 100 simulations for models MN, SDE, SN, γ− = 0.3, 0.5, 0.85, and p0 = 0.8, 0.9, 0.95. Some notable
results of Table 1 are enumerated below:
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1. While mdFDR is almost always controlled by q = 0.05 level by all procedures, the expected number of correct
discoveries by the NPB procedure is generally higher than other procedures, especially when there is high
skewness in the alternative priors.

2. For larger values of p0, expected number of discoveries are smaller by all methods, but the proposed NPB
method is still better than others.

A similar table for mixture of skew normal alternatives with different number of mixtures can be found in
Supplementary Materials.

5 Real data

We applied the proposed method to (i) a gene expression HIV study by van’t Wout et al. (2003); and (ii) a
genome-wide SNP association study on the waist-to-hip ratio (WHR) for European-ancestry females by Shun-
gin et al. (2015). Van’t Wout and colleagues measured, through a cDNA array, the mRNA expression changes in
established cell lines during transfection with HIV in vitro, compared to mRNA preparation from the cell lined
under control conditions. The genome-wide SNP association study examined the correlation between WHR
measurements and SNP genotypes in a large number of samples.

Note that our methodology is described in terms of test statistics Xi∼N(θi, σ2), i = 1, 2, …, m. However, any
test statistics can be converted to normal variate at least under the null. Let Ti be the test statistic for testing ith
hypothesis with F(Ti) as its distribution function under the null. Let Xi = Φ−1(F(Ti)), where Φ is the distribution
function of the N(0, 1). Note that Xi∼N(0, 1) under the null. However, following Efron (2007a,b), we assume
that Xi∼N(0, σ2) under the null, where σ2 may be <1 or >1 due to possible correlation among the components.
Thus, we assume that Xi∼N(θi, σ2), i = 1, 2, …, m, where θis are independently distributed as (2).

Remarks 3:

a. In both datasets, we observe that the mean of the null-distribution needs to be shifted; otherwise, there
are unusually high number of discoveries. Note that this phenomenon has also been reported by Efron
(2007a,b). Thus, we assume that the null distribution is N(μ0, σ2), where μ0 ≠ 0. In order to apply the ap-
proach of Section 4, where we assume that μ0 = 0, all we have to do is to transform 𝑥 → 𝑥 − �̂�0, where �̂�0
is an estimate of μ0. We obtain the estimate �̂�0 using EM algorithm steps as discussed in Section 4. In each
iterative step, we transform 𝑥 → 𝑥 − �̂�(𝑟)

0 , where

�̂�(𝑟)
0 =

∑𝑚
𝑖=1 𝑝(𝑟)

0𝑖 𝑥𝑖

∑𝑚
𝑖=1 𝑝(𝑟)

0𝑖
, 𝑟 ≥ 1, �̂�(0)

0 = ̄𝑥.

b. It is natural to expect a slight decay in the estimate of σ (the standard deviation under the null), as the
number of bases (of the mixture components) B under the non-null distribution increases. However, for
both data sets we considered the estimates of σ decreases dramatically as B increases. This may be due to the
correlation among the test statistics as also hypothesized by Efron (2007a,b). The information criterions (i.e.
AIC or BIC) picked the most complex model (with very large B and small σ), which lead to underestimation
of the null and overestimation of the alternative distributions. To resolve this, we first estimated d μ0 and σ
of the null distribution from the simplest model (i.e. B = 2) and then estimated the alternative distributions
(ωk weights and B) using the criterion to pick the optimal model.

5.1 The HIV data

The data consists of mRNA expression levels from eight cDNA microarrays – four from cell lines transfected
by HIV retrovirus and four from uninfected cell lines, each measuring expression levels of 7680 transcripts. For
each gene, we obtain a two-sample t-statistic, comparing the infected versus the uninfected subjects, which is
then transformed to a z-value, where zi = Φ−1{F6(ti)}. Here F6(·) denotes the cumulative distribution function
(cdf) of t-distribution with 6 degrees of freedom, and Φ denotes the cdf of standard normal distribution. The
histogram of the z-values is given in the left panel of Figure 3 with a nonparametric fit, which is picked by the
AIC as proposed in Section 4.
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Figure 3: HIV-data: left panel – histogram with cut-off points by BY, SNB and the proposed Bayesian nonparametric
method (NPB); right panel – local fdrs based on Efron’s (EF.LFDR) and the new nonparametric approach (NP.LFDR)
with cut-off points of BY, SNB and NPB.

The BY procedure resulted in cutoffs (−3.94, 3.94), which resulted in 18 total discoveries with 2 genes de-
clared as under-expressed and 16 as over-expressed. For the proposed Bayes rule, we used AIC that picks the
model with B = 4 bases, where the parameter estimates from the EM algorithm are: �̂�0 = −0.127, �̂� = 0.9, ̂𝑝0 =
0.984, ̂𝑝− = 0.003, and ̂𝑝+ = 0.014. Next, we plugged in these estimates and use procedure discussed in Section
3 to obtain the Bayes rule. We ended up with cutoffs (−3.94, 3.12) with total 38 discoveries (under-expressed
genes: 2 and over-expressed genes: 36).

The HIV data was also studied by Efron (2007a,b) using a local false discovery approach. In analogy to
Efron’s local false discovery rate, we introduce

LFDR(𝑧) = 𝑝0𝑓0(𝑧)
𝑝−𝑓−(𝑥𝑖) + 𝑝+𝑓+(𝑥𝑖) + 𝑝0𝑓0(𝑥𝑖)

, (12)

where f 0(z) is the estimated null density, and estimates of f −(xi) and f +(xi) are give by (11). The cutoff threshold
LFDR ≤ 0.2 is used to discover infected genes (Efron 2007a, 2007b) with 𝐻(−)

𝑖 and 𝐻(+)
𝑖 discoveries made based

on the sign of zi.
Efron’s LFDR approach resulted in 160 discoveries (left: 54 and right:106), while the LFDR approach based

on (12) resulted in 42 discoveries (left: 3 and right: 39). It is interesting to note that there is not a large difference,
in terms of the total number of discoveries, between the proposed approach (NPB) and the LFDR approach
based on (12). Perhaps the Efron’s LFDR approach over predicts the number of discoveries as it was also pointed
out by Guttardo et al. (2006).

5.2 The WHR data

To study the genetic architecture of body fat distribution, Shungin et al. (2015) performed a large-scale genome-
wide association study in an effort to identify SNPs with genotypes significantly correlated with waist-to-hip
ratio. Following standard QC procedures used in genome-wide association studies, the statistical test employed
by the authors was a linear regression model, adjusted for confounding covariates. A major finding of this
and related studies is the chromosome 16 locus. Hence, we focused on genetic markers from chromosome 16
residing between 40 Mbp and 70 Mbp. The histogram of the test statistics is given in the left panel of Figure 4
with a nonparametric fit, which is picked by the AIC as proposed in Section 4.
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Figure 4: WHR-data: left panel – histogram with cut-off points by BY, SNB and the proposed Bayesian nonparametric
method (NPB); right panel – local fdrs based on Efron’s (EF.LFDR) and the new nonparametric approach (NP.LFDR) with
cut-off points of BY, SNB and NPB.

The BY procedure resulted in 54 total discoveries where 2 SNPs negatively correlated, and 52 SNPs positively
correlated with waist-to-hip ratios. For the proposed Bayes rule, we again used AIC and selected the model with
B = 4 basis, where the parameter estimates from the EM algorithm are: �̂�0 = 0.353, �̂� = 0.988, ̂𝑝0 = 0.996, ̂𝑝− =
0.0, and ̂𝑝+ = 0.004. The Bayes procedure yielded total 54 discoveries, similar to the BY procedure.

Efron’s LFDR approach resulted in 48 discoveries (left: 0 and right: 48). The LFDR approach based on (12)
also resulted in 48 right discoveries, plus 2 left discoveries.

To assess the differential performance of the three methods, we explored the biological plausibility of SNPs
that were identified in our method compared to Efron LFDR approach using the extreme BMI GWAS dataset.
Our method discovered two left-tail (rs12446228 and rs1477196) and four right-tail (rs4783819, rs7190492,
rs1861869 and rs11075986) SNPs, which were absent from the results of Efron LFDR method. All six of these
SNPs reside within the FTO gene on chromosome 16q. FTO is a well-established obesity-associated gene (Pe-
ters, Ausmeier & Rüther, 1999; Fischer et al., 2009; Meyre et al. 2009; 2009). Further, all six of these SNPs are
significantly correlated with SNP rs1421085 –also a SNP in FTO; the alleles segregating at which exhibit strong
functional effects on adipocyte biology mediated through enhancer activity (Claussnitzer et al. 2015). Hence,
we can reasonably conclude that our method identifies true positive results not discovered through Efron LFDR
method.

6 Concluding Remarks

Generally, the hypotheses problems are stated as either one-tailed or two-tailed tests. However, many practical
situations would dictate that one tail is more likely than the other tail under the alternative hypotheses. In such
cases, one-tailed or two-tailed tests will not be appropriate. The proposed Empirical Bayesian methodology
develops procedure for testing directional hypothesis with a mixture of null and nonparametric alternative
with separate priors on the left and right tails. We showed in this paper that the use of such nonparametric
mixture model yields a better power theoretically and empirically. The proposed Bayes rule is based on an
optimality criterion, and it also control mixed directional false discovery rate (mdFDR). Although, we have
mainly focused on the “0-1” loss, but any other loss function can be considered without much difficulties. In
addition, as a by-product of the proposed nonparametric fit, a local false discovery rate approach is proposed,
which can be considered as an alternative to Efron (2007a,b) nonparametric LFDR approach for directional
hypotheses.

It is worthy to note that, we observed some level of inconsistency in the number of discoveries between the
FDR controlled by the BY procedure (e.g. less discovery in HIV data and more discovery in WHR data) and
the local fdr controlled via Efron’s LFDR procedure. However, the proposed method yields consistent results
between the FDR controlled via the new procedure (NPB) and the local fdr procedure based on (12).

A web application that can be used by the research community to reproduce the results in
this paper or to use the proposed methodology for any other related applications is available at
https://npseb.shinyapps.io/npseb/.

Supplementary material

The results of simulation (setup 2) is available with this paper at the web-based supplementary files.
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