1,593 research outputs found

    Gaussian model of explosive percolation in three and higher dimensions

    Full text link
    The Gaussian model of discontinuous percolation, recently introduced by Ara\'ujo and Herrmann [Phys. Rev. Lett., 105, 035701 (2010)], is numerically investigated in three dimensions, disclosing a discontinuous transition. For the simple-cubic lattice, in the thermodynamic limit, we report a finite jump of the order parameter, J=0.415±0.005J=0.415 \pm 0.005. The largest cluster at the threshold is compact, but its external perimeter is fractal with fractal dimension dA=2.5±0.2d_A = 2.5 \pm 0.2. The study is extended to hypercubic lattices up to six dimensions and to the mean-field limit (infinite dimension). We find that, in all considered dimensions, the percolation transition is discontinuous. The value of the jump in the order parameter, the maximum of the second moment, and the percolation threshold are analyzed, revealing interesting features of the transition and corroborating its discontinuous nature in all considered dimensions. We also show that the fractal dimension of the external perimeter, for any dimension, is consistent with the one from bridge percolation and establish a lower bound for the percolation threshold of discontinuous models with finite number of clusters at the threshold

    Recent advances and open challenges in percolation

    Full text link
    Percolation is the paradigm for random connectivity and has been one of the most applied statistical models. With simple geometrical rules a transition is obtained which is related to magnetic models. This transition is, in all dimensions, one of the most robust continuous transitions known. We present a very brief overview of more than 60 years of work in this area and discuss several open questions for a variety of models, including classical, explosive, invasion, bootstrap, and correlated percolation

    Percolation with long-range correlated disorder

    Full text link
    Long-range power-law correlated percolation is investigated using Monte Carlo simulations. We obtain several static and dynamic critical exponents as function of the Hurst exponent HH which characterizes the degree of spatial correlation among the occupation of sites. In particular, we study the fractal dimension of the largest cluster and the scaling behavior of the second moment of the cluster size distribution, as well as the complete and accessible perimeters of the largest cluster. Concerning the inner structure and transport properties of the largest cluster, we analyze its shortest path, backbone, red sites, and conductivity. Finally, bridge site growth is also considered. We propose expressions for the functional dependence of the critical exponents on HH

    Watersheds are Schramm-Loewner Evolution curves

    Full text link
    We show that in the continuum limit watersheds dividing drainage basins are Schramm-Loewner Evolution (SLE) curves, being described by one single parameter κ\kappa. Several numerical evaluations are applied to ascertain this. All calculations are consistent with SLEκ_\kappa, with κ=1.734±0.005\kappa=1.734\pm0.005, being the only known physical example of an SLE with κ<2\kappa<2. This lies outside the well-known duality conjecture, bringing up new questions regarding the existence and reversibility of dual models. Furthermore it constitutes a strong indication for conformal invariance in random landscapes and suggests that watersheds likely correspond to a logarithmic Conformal Field Theory (CFT) with central charge c≈−7/2c\approx-7/2.Comment: 5 pages and 4 figure

    Watersheds in disordered media

    Get PDF
    This is the final published version. It first appeared at http://journal.frontiersin.org/article/10.3389/fphy.2015.00005/full#h11.What is the best way to divide a rugged landscape? Since ancient times, watersheds separating adjacent water systems that flow, for example, toward different seas, have been used to delimit boundaries. Interestingly, serious and even tense border disputes between countries have relied on the subtle geometrical properties of these tortuous lines. For instance, slight and even anthropogenic modifications of landscapes can produce large changes in a watershed, and the effects can be highly nonlocal. Although the watershed concept arises naturally in geomorphology, where it plays a fundamental role in water management, landslide, and flood prevention, it also has important applications in seemingly unrelated fields such as image processing and medicine. Despite the far-reaching consequences of the scaling properties on watershed-related hydrological and political issues, it was only recently that a more profound and revealing connection has been disclosed between the concept of watershed and statistical physics of disordered systems. This review initially surveys the origin and definition of a watershed line in a geomorphological framework to subsequently introduce its basic geometrical and physical properties. Results on statistical properties of watersheds obtained from artificial model landscapes generated with long-range correlations are presented and shown to be in good qualitative and quantitative agreement with real landscapes.We acknowledge financial support from the European Research Council (ERC) Advanced Grant 319968-FlowCCS, the Brazilian Agencies CNPq, CAPES, FUNCAP and FINEP, the FUNCAP/CNPq Pronex grant, the National Institute of Science and Technology for Complex Systems in Brazil, the Portuguese Foundation for Science and Technology (FCT) under contracts no. IF/00255/2013, PEst-OE/FIS/UI0618/2014, and EXCL/FIS-NAN/0083/2012, and the Swiss National Science Foundation under Grant No. P2EZP2-152188
    • …
    corecore