68 research outputs found

    EUDAQ - A data acquisition software framework for common beam telescopes

    Get PDF
    EUDAQ is a generic data acquisition software developed for use in conjunction with common beam telescopes at charged particle beam lines. Providing high-precision reference tracks for performance studies of new sensors, beam telescopes are essential for the research and development towards future detectors for high-energy physics. As beam time is a highly limited resource, EUDAQ has been designed with reliability and ease-of-use in mind. It enables flexible integration of different independent devices under test via their specific data acquisition systems into a top-level framework. EUDAQ controls all components globally, handles the data flow centrally and synchronises and records the data streams. Over the past decade, EUDAQ has been deployed as part of a wide range of successful test beam campaigns and detector development applications

    Belle II Vertex Detector Performance

    Get PDF
    The Belle II experiment at the SuperKEKB accelerator (KEK, Tsukuba, Japan) collected its first e+e− collision data in the spring 2019. The aim of accumulating a 50 times larger data sample than Belle at KEKB, a first generation B-Factory, presents substantial challenges to both the collider and the detector, requiring not only state-of-the-art hardware, but also modern software algorithms for tracking and alignment. The broad physics program requires excellent performance of the vertex detector, which is composed of two layers of DEPFET pixels and four layers of double sided-strip sensors. In this contribution, an overview of the vertex detector of Belle II and our methods to ensure its optimal performance, are described, and the first results and experiences from the first physics run are presented

    Operational experience and commissioning of the Belle II vertex detector

    Get PDF

    Measurements of the branching fractions for BKγB \to K^{*}\gamma decays at Belle II

    Get PDF
    This paper reports a study of BKγB \to K^{*}\gamma decays using 62.8±0.662.8\pm 0.6 fb1^{-1} of data collected during 2019--2020 by the Belle II experiment at the SuperKEKB e+ee^{+}e^{-} asymmetric-energy collider, corresponding to (68.2±0.8)×106(68.2 \pm 0.8) \times 10^6 BBB\overline{B} events. We find 454±28454 \pm 28, 50±1050 \pm 10, 169±18169 \pm 18, and 160±17160 \pm 17 signal events in the decay modes B0K0[K+π]γB^{0} \to K^{*0}[K^{+}\pi^{-}]\gamma, B0K0[KS0π0]γB^{0} \to K^{*0}[K^0_{\rm S}\pi^{0}]\gamma, B+K+[K+π0]γB^{+} \to K^{*+}[K^{+}\pi^{0}]\gamma, and B+K+[K+π0]γB^{+} \to K^{*+}[K^{+}\pi^{0}]\gamma, respectively. The uncertainties quoted for the signal yield are statistical only. We report the branching fractions of these decays: B[B0K0[K+π]γ]=(4.5±0.3±0.2)×105,\mathcal{B} [B^{0} \to K^{*0}[K^{+}\pi^{-}]\gamma] = (4.5 \pm 0.3 \pm 0.2) \times 10^{-5}, B[B0K0[KS0π0]γ]=(4.4±0.9±0.6)×105,\mathcal{B} [B^{0} \to K^{*0}[K^0_{\rm S}\pi^{0}]\gamma] = (4.4 \pm 0.9 \pm 0.6) \times 10^{-5}, B[B+K+[K+π0]γ]=(5.0±0.5±0.4)×105, and\mathcal{B} [B^{+} \to K^{*+}[K^{+}\pi^{0}]\gamma] = (5.0 \pm 0.5 \pm 0.4)\times 10^{-5},\text{ and} B[B+K+[KS0π+]γ]=(5.4±0.6±0.4)×105,\mathcal{B} [B^{+} \to K^{*+}[K^0_{\rm S}\pi^{+}]\gamma] = (5.4 \pm 0.6 \pm 0.4) \times 10^{-5}, where the first uncertainty is statistical, and the second is systematic. The results are consistent with world-average values

    Measurement of the integrated luminosity of the Phase 2 data of the Belle II experiment

    Get PDF
    From April to July 2018, a data sample at the peak energy of the γ(4S) resonance was collected with the Belle II detector at the SuperKEKB electron-positron collider. This is the first data sample of the Belle II experiment. Using Bhabha and digamma events, we measure the integrated luminosity of the data sample to be (496.3 ± 0.3 ± 3.0) pb-1, where the first uncertainty is statistical and the second is systematic. This work provides a basis for future luminosity measurements at Belle II

    Determination of Vub|V_{ub}| from untagged B0π+νB^0\to\pi^- \ell^+ \nu_{\ell} decays using 2019-2021 Belle II data

    Full text link
    We present an analysis of the charmless semileptonic decay B0π+νB^0\to\pi^- \ell^+ \nu_{\ell}, where =e,μ\ell = e, \mu, from 198.0 million pairs of BBˉB\bar{B} mesons recorded by the Belle II detector at the SuperKEKB electron-positron collider. The decay is reconstructed without identifying the partner BB meson. The partial branching fractions are measured independently for B0πe+νeB^0\to\pi^- e^+ \nu_{e} and B0πμ+νμB^0\to\pi^- \mu^+ \nu_{\mu} as functions of q2q^{2} (momentum transfer squared), using 3896 B0πe+νeB^0\to\pi^- e^+ \nu_{e} and 5466 B0πμ+νμB^0\to\pi^- \mu^+ \nu_{\mu} decays. The total branching fraction is found to be (1.426±0.056±0.125)×104(1.426 \pm 0.056 \pm 0.125) \times 10^{-4} for B0π+νB^0\to\pi^- \ell^+ \nu_{\ell} decays, where the uncertainties are statistical and systematic, respectively. By fitting the measured partial branching fractions as functions of q2q^{2}, together with constraints on the nonperturbative hadronic contribution from lattice QCD calculations, the magnitude of the Cabibbo-Kobayashi-Maskawa matrix element VubV_{ub}, (3.55±0.12±0.13±0.17)×103(3.55 \pm 0.12 \pm 0.13 \pm 0.17) \times 10^{-3}, is extracted. Here, the first uncertainty is statistical, the second is systematic and the third is theoretical

    Angular analysis of B+ρ+ρ0B^+ \to \rho^+\rho^0 decays reconstructed in 2019, 2020, and 2021 Belle II data

    Full text link
    We report on a Belle II measurement of the branching fraction (B\mathcal{B}), longitudinal polarization fraction (fLf_L), and CP asymmetry (ACP\mathcal{A}_{CP}) of B+ρ+ρ0B^+\to \rho^+\rho^0 decays. We reconstruct B+ρ+(π+π0(γγ))ρ0(π+π)B^+\to \rho^+(\to \pi^+\pi^0(\to \gamma\gamma))\rho^0(\to \pi^+\pi^-) decays in a sample of SuperKEKB electron-positron collisions collected by the Belle II experiment in 2019, 2020, and 2021 at the Υ\Upsilon(4S) resonance and corresponding to 190 fb1^{-1} of integrated luminosity. We fit the distributions of the difference between expected and observed BB candidate energy, continuum-suppression discriminant, dipion masses, and decay angles of the selected samples, to determine a signal yield of 345±31345 \pm 31 events. The signal yields are corrected for efficiencies determined from simulation and control data samples to obtain $\mathcal{B}(B^+ \to \rho^+\rho^0) = [23.2^{+\ 2.2}_{-\ 2.1} (\rm stat) \pm 2.7 (\rm syst)]\times 10^{-6},, f_L = 0.943 ^{+\ 0.035}_{-\ 0.033} (\rm stat)\pm 0.027(\rm syst),and, and \mathcal{A}_{CP}=-0.069 \pm 0.068(\rm stat) \pm 0.060 (\rm syst).Theresultsagreewithpreviousmeasurements.Thisisthefirstmeasurementof. The results agree with previous measurements. This is the first measurement of \mathcal{A}_{CP}in in B^+\to \rho^+\rho^0$ decays reported by Belle II

    Measurement of the branching fraction for the decay BK(892)+B \to K^{\ast}(892)\ell^+\ell^- at Belle II

    Full text link
    We report a measurement of the branching fraction of BK(892)+B \to K^{\ast}(892)\ell^+\ell^- decays, where +=μ+μ\ell^+\ell^- = \mu^+\mu^- or e+ee^+e^-, using electron-positron collisions recorded at an energy at or near the Υ(4S)\Upsilon(4S) mass and corresponding to an integrated luminosity of 189189 fb1^{-1}. The data was collected during 2019--2021 by the Belle II experiment at the SuperKEKB e+ee^{+}e^{-} asymmetric-energy collider. We reconstruct K(892)K^{\ast}(892) candidates in the K+πK^+\pi^-, KS0π+K_{S}^{0}\pi^+, and K+π0K^+\pi^0 final states. The signal yields with statistical uncertainties are 22±622\pm 6, 18±618 \pm 6, and 38±938 \pm 9 for the decays BK(892)μ+μB \to K^{\ast}(892)\mu^+\mu^-, BK(892)e+eB \to K^{\ast}(892)e^+e^-, and BK(892)+B \to K^{\ast}(892)\ell^+\ell^-, respectively. We measure the branching fractions of these decays for the entire range of the dilepton mass, excluding the very low mass region to suppress the BK(892)γ(e+e)B \to K^{\ast}(892)\gamma(\to e^+e^-) background and regions compatible with decays of charmonium resonances, to be \begin{equation} {\cal B}(B \to K^{\ast}(892)\mu^+\mu^-) = (1.19 \pm 0.31 ^{+0.08}_{-0.07}) \times 10^{-6}, {\cal B}(B \to K^{\ast}(892)e^+e^-) = (1.42 \pm 0.48 \pm 0.09)\times 10^{-6}, {\cal B}(B \to K^{\ast}(892)\ell^+\ell^-) = (1.25 \pm 0.30 ^{+0.08}_{-0.07}) \times 10^{-6}, \end{equation} where the first and second uncertainties are statistical and systematic, respectively. These results, limited by sample size, are the first measurements of BK(892)+B \to K^{\ast}(892)\ell^+\ell^- branching fractions from the Belle II experiment
    corecore