8 research outputs found

    Male sex and the risk of childhood cancer: The mediating effect of birth defects

    Get PDF
    Background: There is a persistent, unexplained disparity in sex ratio among childhood cancer cases, whereby males are more likely to develop most cancers. This male predominance is also seen for most birth defects, which are strongly associated with risk of childhood cancer. We conducted mediation analysis to estimate whether the increased risk of cancer among males is partially explained by birth defect status. Methods: We used a population-based birth cohort with linked data from birth certificates, birth defects registries, and cancer registries from Arkansas, Michigan, North Carolina, and Texas. We conducted counterfactual mediation analysis to estimate the natural direct and indirect effects of sex on cancer risk, modeling birth defect status as mediator. State; birth year; plurality; and maternal race and ethnicity, age, and education were considered confounders. We conducted separate analyses limited to cancers diagnosed younger than 1 year of age. Results: Our dataset included 10 181 074 children: 15 110 diagnosed with cancer, 539 567 diagnosed with birth defects, and 2124 co-occurring cases. Birth defect status mediated 38% of the association between sex and cancer overall. The proportion mediated varied by cancer type, including acute myeloid leukemia (93%), neuroblastoma (35%), and non-Hodgkin lymphoma (6%). Among children younger than 1 year of age at cancer diagnosis, the proportion mediated was substantially higher (82%). Conclusions: Our results suggest that birth defects mediate a statistically significant proportion of the relationship between sex and childhood cancer. The proportion mediated varied by cancer type and diagnosis age. These findings improve our understanding of the causal pathway underlying male sex as a risk factor for childhood cancer

    Cancer diagnostic profile in children with structural birth defects: An assessment in 15,000 childhood cancer cases

    Get PDF
    Background: Birth defects are established risk factors for childhood cancer. Nonetheless, cancer epidemiology in children with birth defects is not well characterized. Methods: Using data from population-based registries in 4 US states, this study compared children with cancer but no birth defects (n = 13,111) with children with cancer and 1 or more nonsyndromic birth defects (n = 1616). The objective was to evaluate cancer diagnostic characteristics, including tumor type, age at diagnosis, and stage at diagnosis. Results: Compared with the general population of children with cancer, children with birth defects were diagnosed with more embryonal tumors (26.6% vs 18.7%; q < 0.001), including neuroblastoma (12.5% vs 8.2%; q < 0.001) and hepatoblastoma (5.0% vs 1.3%; q < 0.001), but fewer hematologic malignancies, including acute lymphoblastic leukemia (12.4% vs 24.4%; q < 0.001). In age-stratified analyses, differences in tumor type were evident among children younger than 1 year and children 1 to 4 years old, but they were attenuated among children 5 years of age or older. The age at diagnosis was younger in children with birth defects for most cancers, including leukemia, lymphoma, astrocytoma, medulloblastoma, ependymoma, embryonal tumors, and germ cell tumors (all q < 0.05). Conclusions: The results indicate possible etiologic heterogeneity in children with birth defects, have implications for future surveillance efforts, and raise the possibility of differential cancer ascertainment in children with birth defects. Lay Summary: Scientific studies suggest that children with birth defects are at increased risk for cancer. However, these studies have not been able to determine whether important tumor characteristics, such as the type of tumor diagnosed, the age at which the tumor is diagnosed, and the degree to which the tumor has spread at the time of diagnosis, are different for children with birth defects and children without birth defects. This study attempts to answer these important questions. By doing so, it may help scientists and physicians to understand the causes of cancer in children with birth defects and diagnose cancer at earlier stages when it is more treatable

    Association between Birth Defects and Cancer Risk among Children and Adolescents in a Population-Based Assessment of 10 Million Live Births

    Get PDF
    Importance: Birth defects affect approximately 1 in 33 children. Some birth defects are known to be strongly associated with childhood cancer (eg, trisomy 21 and acute leukemia). However, comprehensive evaluations of childhood cancer risk in those with birth defects have been limited in previous studies by insufficient sample sizes. Objectives: To identify specific birth defect-childhood cancer (BD-CC) associations and characterize cancer risk in children by increasing number of nonchromosomal birth defects. Design, Setting, and Participants: This multistate, population-based registry linkage study pooled statewide data on births, birth defects, and cancer from Texas, Arkansas, Michigan, and North Carolina on 10181074 children born from January 1, 1992, to December 31, 2013. Children were followed up to 18 years of age for a diagnosis of cancer. Data were retrieved between September 26, 2016, and September 21, 2017, and data analysis was performed from September 2, 2017, to March 21, 2019. Exposures: Birth defects diagnoses (chromosomal anomalies and nonchromosomal birth defects) recorded by statewide, population-based birth defects registries. Main Outcomes and Measures: Cancer diagnosis before age 18 years, as recorded in state cancer registries. Cox regression models were used to generate hazard ratios (HRs) and 95% CIs to evaluate BD-CC associations and the association between number of nonchromosomal defects and cancer risk. Results: Compared with children without any birth defects, children with chromosomal anomalies were 11.6 (95% CI, 10.4-12.9) times more likely to be diagnosed with cancer, whereas children with nonchromosomal birth defects were 2.5 (95% CI, 2.4-2.6) times more likely to be diagnosed with cancer before 18 years of age. An increasing number of nonchromosomal birth defects was associated with a corresponding increase in the risk of cancer. Children with 4 or more major birth defects were 5.9 (95% CI, 5.3-6.4) times more likely to be diagnosed with cancer compared with those without a birth defect. In the analysis of 72 specific BD-CC patterns, 40 HRs were statistically significant (adjusted P <.05) after accounting for multiple comparisons. Cancers most frequently associated with nonchromosomal defects were hepatoblastoma and neuroblastoma. Conclusions and Relevance: Several significant and novel associations were observed between specific birth defects and cancers. Among children with nonchromosomal birth defects, the number of major birth defects diagnosed was significantly and directly associated with cancer risk. These findings could inform clinical treatment for children with birth defects and may elucidate mechanisms that lead to these complex outcomes

    Exome-wide assessment of isolated biliary atresia: A report from the National Birth Defects Prevention Study using childā€“parent trios and a caseā€“control design to identify novel rare variants

    Get PDF
    The etiology of biliary atresia (BA) is unknown, but recent studies suggest a role for rare protein-altering variants (PAVs). Exome sequencing data from the National Birth Defects Prevention Study on 54 childā€“parent trios, one childā€“mother duo, and 1513 parents of children with other birth defects were analyzed. Most (91%) cases were isolated BA. We performed (1) a trio-based analysis to identify rare de novo, homozygous, and compound heterozygous PAVs and (2) a caseā€“control analysis using a sequence kernel-based association test to identify genes enriched with rare PAVs. While we replicated previous findings on PKD1L1, our results do not suggest that recurrent de novo PAVs play important roles in BA susceptibility. In fact, our finding in NOTCH2, a disease gene associated with Alagille syndrome, highlights the difficulty in BA diagnosis. Notably, IFRD2 has been implicated in other gastrointestinal conditions and warrants additional study. Overall, our findings strengthen the hypothesis that the etiology of BA is complex

    Student Motivation and Self-Regulated Learning in the College Classroom

    No full text

    Instructional Utility and Learning Efficacy of Common Active Learning Strategies

    No full text
    corecore