6,089 research outputs found

    Neutrino degeneracy and cosmological nucleosynthesis, revisited

    Get PDF
    A reexamination of the effects of non-zero degeneracies on Big Bang Nucleosynthesis is made. As previously noted, non-trivial alterations of the standard model conclusions can be induced only if excess lepton numbers L sub i, comparable to photon number densities eta sub tau, are assumed (where eta sub tau is approx. 3 times 10(exp 9) eta sub b). Furthermore, the required lepton number densities (L sub i eta sub tau) must be different for upsilon sub e than for upsilon sub mu and epsilon sub tau. It is shown that this loophole in the standard model of nucleosynthesis is robust and will not vanish as abundance and reaction rate determinations improve. However, it is also argued that theoretically (L sub e) approx. (L sub mu) approx. (L sub tau) approx. eta sub b is much less than eta sub tau which would preclude this loophole in standard unified models

    Fast calculation of a family of elliptical mass gravitational lens models

    Get PDF
    Because of their simplicity, axisymmetric mass distributions are often used to model gravitational lenses. Since galaxies are usually observed to have elliptical light distributions, mass distributions with elliptical density contours offer more general and realistic lens models. They are difficult to use, however, since previous studies have shown that the deflection angle (and magnification) in this case can only be obtained by rather expensive numerical integrations. We present a family of lens models for which the deflection can be calculated to high relative accuracy (one part in 100000) with a greatly reduced numerical effort, for small and large ellipticity alike. This makes it easier to use these distributions for modelling individual lenses as well as for applications requiring larger computing times, such as statistical lensing studies. A program implementing this method can be obtained from the author (or at http://www.sns.ias.edu/~barkana/ellip.html).Comment: 13 pages, 3 figures, submitted to ApJ, also available at http://www.sns.ias.edu/~barkana/ellip.htm

    Stochastic Process Associated with Traveling Wave Solutions of the Sine-Gordon Equation

    Full text link
    Stochastic processes associated with traveling wave solutions of the sine-Gordon equation are presented. The structure of the forward Kolmogorov equation as a conservation law is essential in the construction and so is the traveling wave structure. The derived stochastic processes are analyzed numerically. An interpretation of the behaviors of the stochastic processes is given in terms of the equation of motion.Comment: 12 pages, 9 figures; corrected typo

    International marine science research projects : second inventory of international projects at Sea Grant institutions, 1990

    Get PDF
    This inventory of marine science projects at Sea Grant institutions was completed in order to gauge the level and enhance a database of U.S./foreign collaboration in international marine research initiated at U.S. Sea Grant institutions. The inventory was done by the International Marine Science Cooperation Program at the Woods Hole Oceanographic Institution's Sea Grant Office. The first inventory of projects with international components at Sea Grant institutions was done in 1984-85 by the International Program. This second inventory continues in the tradition of the first to "take the pulse" of international interest at Sea Grant institutions. The pulse is very active despite the lack of direct funding accorded the formal Sea Grant International Program at the national level. Of the 122 projects at Sea Grant institutions, however, only 29 were directly funded in part or entirely by Sea Grant. The inventory analyzes data from 122 interntional projects initiated at 20 Sea Grant institutions by profiling and explicating the extent of project foreign locations, sources of funding, areas of expertise for principal investigators, and contacts at foreign and U.S. agencies and institutions. It presents one-page summaries of the 122 projects along with indexes by geographic location, funding source, PI discipline, PI name, and keywords. In addition, this report compares the data from the 1989-90 inventory with that of the 1985 inventory.This work is the result of research sponsored by NOAA, National Sea Grant College Program Offce, Departent of Commerce, under Grant No. NA90-AA-D-SG480, Woods Hole Oceanographic Institution Sea Grant Project Number E/L-1

    Group Theoretical Quantization of a Phase Space S1xR+S^{1} x R^{+} and the Mass Spectrum of Schwarzschild Black Holes in D Space-Time Dimensions

    Get PDF
    The symplectic reduction of pure spherically symmetric (Schwarzschild) classical gravity in D space-time dimensions yields a 2-dimensional phase space of observables consisting of the Mass M (>0) and a canonically conjugate (Killing) time variable T. Imposing (mass-dependent) periodic boundary conditions in time on the associated quantum mechanical plane waves which represent the Schwarzschild system in the period just before or during the formation of a black hole, yields an energy spectrum of the hole which realizes the old Bekenstein postulate that the quanta of the horizon A_{D-2} are multiples of a basic area quantum. In the present paper it is shown that the phase space of such a Schwarzschild black hole in D space-time dimensions is symplectomorphic to a symplectic manifold S={(phi in R mod 2 pi, p = A_{D-2} >0)} with the symplectic form d phi wedge d p. As the action of the group SO_+(1,2) on that manifold is transitive, effective and Hamiltonian, it can be used for a group theoretical quantization of the system. The area operator p for the horizon corresponds to the generator of the compact subgroup SO(2) and becomes quantized accordingly: The positive discrete series of the irreducible unitary representations of SO_+(1,2) yields an (horizon) area spectrum proportional k+n, where k = 1,2,... characterizes the representation and n = 0,1,2,... the number of area quanta. If one employs the unitary representations of the universal covering group of SO_+(1,2) the number k can take any fixed positive real value (theta-parameter). The unitary representations of the positive discrete series provide concrete Hilbert spaces for quantum Schwarzschild black holes

    New Dependencies of Hierarchies in Polynomial Optimization

    Full text link
    We compare four key hierarchies for solving Constrained Polynomial Optimization Problems (CPOP): Sum of Squares (SOS), Sum of Diagonally Dominant Polynomials (SDSOS), Sum of Nonnegative Circuits (SONC), and the Sherali Adams (SA) hierarchies. We prove a collection of dependencies among these hierarchies both for general CPOPs and for optimization problems on the Boolean hypercube. Key results include for the general case that the SONC and SOS hierarchy are polynomially incomparable, while SDSOS is contained in SONC. A direct consequence is the non-existence of a Putinar-like Positivstellensatz for SDSOS. On the Boolean hypercube, we show as a main result that Schm\"udgen-like versions of the hierarchies SDSOS*, SONC*, and SA* are polynomially equivalent. Moreover, we show that SA* is contained in any Schm\"udgen-like hierarchy that provides a O(n) degree bound.Comment: 26 pages, 4 figure

    Exact Multifractal Spectra for Arbitrary Laplacian Random Walks

    Full text link
    Iterated conformal mappings are used to obtain exact multifractal spectra of the harmonic measure for arbitrary Laplacian random walks in two dimensions. Separate spectra are found to describe scaling of the growth measure in time, of the measure near the growth tip, and of the measure away from the growth tip. The spectra away from the tip coincide with those of conformally invariant equilibrium systems with arbitrary central charge c≀1c\leq 1, with cc related to the particular walk chosen, while the scaling in time and near the tip cannot be obtained from the equilibrium properties.Comment: 4 pages, 3 figures; references added, minor correction

    Gravitational Lensing by Power-Law Mass Distributions: A Fast and Exact Series Approach

    Get PDF
    We present an analytical formulation of gravitational lensing using familiar triaxial power-law mass distributions, where the 3-dimensional mass density is given by ρ(X,Y,Z)=ρ0[1+(Xa)2+(Yb)2+(Zc)2]−Μ/2\rho(X,Y,Z) = \rho_0 [1 + (\frac{X}{a})^2 + (\frac{Y}{b})^2 + (\frac{Z}{c})^2]^{-\nu/2}. The deflection angle and magnification factor are obtained analytically as Fourier series. We give the exact expressions for the deflection angle and magnification factor. The formulae for the deflection angle and magnification factor given in this paper will be useful for numerical studies of observed lens systems. An application of our results to the Einstein Cross can be found in Chae, Turnshek, & Khersonsky (1998). Our series approach can be viewed as a user-friendly and efficient method to calculate lensing properties that is better than the more conventional approaches, e.g., numerical integrations, multipole expansions.Comment: 24 pages, 3 Postscript figures, ApJ in press (October 10th
    • 

    corecore