7,170 research outputs found

    Modeling Hybrid Stars

    Full text link
    We study the so called hybrid stars, which are hadronic stars that contain a core of deconfined quarks. For this purpose, we make use of an extended version of the SU(3) chiral model. Within this approach, the degrees of freedom change naturally from hadrons (baryon octet) to quarks (u, d, s) as the temperature and/or density increases. At zero temperature we are still able to reproduce massive stars, even with the inclusion of hyperons.Comment: To appear in the proceedings of Conference C12-08-0

    The application of the Quark-Hadron Chiral Parity-Doublet Model to neutron star matter

    Full text link
    The Quark-Hadron Chiral Parity-Doublet model (Qχ\chiP) is applied to calculate compact star properties in the presence of a deconfinement phase transition. Within this model, a consistent description of nuclear matter properties, chiral symmetry restoration, and a transition from hadronic to quark and gluonic degrees of freedom is possible within one unified approach. We find that the equation of state obtained is consistent with recent perturbative quantum chromodynamics (QCD) results and is able to accommodate observational constraints of massive and small neutron stars. Furthermore, we show that important features of the equation of state, such as the symmetry energy and its slope, are well within their observational constraints.Comment: 8 pages, 9 figures and 1 tabl

    Chiral Hadronic Mean Field Model including Quark Degrees of Freedom

    Full text link
    In an approach inspired by Polyakov loop extended NJL models, we present a nonlinear hadronic SU(3) sigma-omega mean field model augmented by quark degrees of freedom. By introducing the effective Polyakov loop related scalar field \Phi and an associated effective potential, the model includes all known hadronic degrees of freedom at low temperatures and densities as well as a quark phase at high temperatures and densities. Hadrons in the model exhibit a finite volume in order to suppress baryons at high T and \mu. This ensures that the right asymptotic degrees of freedom are attained for the description of strongly interacting matter and allows to study the QCD phase diagram in a wide range of temperatures and chemical potentials. Therefore, with this model it is possible to study the phase transition of chiral restoration and deconfinement. In this paper, the impact of quarks on the resulting phase diagram is shown. The results from the chiral model are compared to recent data from lattice QCD.Comment: 25 pages, 10 figure

    The Structure and Clustering of Lyman Break Galaxies

    Get PDF
    The number density and clustering properties of Lyman-break galaxies (LBGs) are consistent with them being the central galaxies of the most massive dark halos present at z~3. This conclusion holds in all currently popular hierarchical models for structure formation, and is almost independent of the global cosmological parameters. We examine whether the sizes, luminosities, kinematics and star-formation rates of LBGs are also consistent with this identification. Simple formation models tuned to give good fits to low redshift galaxies can predict the distribution of these quantities in the LBG population. The LBGs should be small (with typical half-light radii of 0.6-2 kpc/h), should inhabit haloes of moderately high circular velocity (180-290 km/s) but have low stellar velocity dispersions (70-120 km/s) and should have substantial star formation rates (15-100 Msun/yr). The numbers here refer to the predicted median values in the LBG sample of Adelberger et al. (1998); the first assumes an Omega=1 universe and the second a flat universe with Omega=0.3. For either cosmology these predictions are consistent with the current (rather limited) observational data. Following the work of Kennicutt (1998) we assume stars to form more rapidly in gas of higher surface density. This predicts that LBG samples should preferentially contain objects with low angular momentum, and so small size, for their mass. In contrast, samples of damped Lyman alpha systems (DLSs), should be biased towards objects with large angular momentum. Bright LBGs and DLSs may therefore form distinct populations, with very different sizes and star formation rates, LBGs being smaller and more metal-rich than DLSs of similar mass and redshift.Comment: 27 pages, 9 figures, MNRAS submitte

    Properties and Stability of Hybrid Stars

    Full text link
    We discuss the properties of neutron stars and their modifications due to the occurrence of hyperons and quarks in the core of the star. More specifically, we consider the general problem of exotic particles inside compact stars in light of the observed two-solar mass pulsar. In addition, we investigate neutron star cooling and a possible explanation of the recently measured cooling curve of the neutron star in the supernova remnant Cas A.Comment: Contribution to SQM 2011 in Krak\'o
    corecore