10,708 research outputs found

    Van der Waals Density Functional for General Geometries

    Full text link
    A scheme within density functional theory is proposed that provides a practical way to generalize to unrestricted geometries the method applied with some success to layered geometries [H. Rydberg, et al., Phys. Rev. Lett. 91, 126402 (2003)]. It includes van der Waals forces in a seamless fashion. By expansion to second order in a carefully chosen quantity contained in the long range part of the correlation functional, the nonlocal correlations are expressed in terms of a density-density interaction formula. It contains a relatively simple parametrized kernel, with parameters determined by the local density and its gradient. The proposed functional is applied to rare gas and benzene dimers, where it is shown to give a realistic description.Comment: 4 pages, 4 figure

    A New Version of Reimers' law of Mass Loss Based on a Physical Approach

    Full text link
    We present a new semi-empirical relation for the mass loss of cool stellar winds, which so far has frequently been described by "Reimers' law". Originally, this relation was based solely on dimensional scaling arguments without any physical interpretation. In our approach, the wind is assumed to result from the spill-over of the extended chromosphere, possibly associated with the action of waves, especially Alfven waves, which are used as guidance in the derivation of the new formula. We obtain a relation akin to the original Reimers law, but which includes two new factors. They reflect how the chromospheric height depends on gravity and how the mechanical energy flux depends, mainly, on effective temperature. The new relation is tested and sensitively calibrated by modelling the blue end of the Horizontal Branch of globular clusters. The most significant difference from mass loss rates predicted by the Reimers relation is an increase by up to a factor of 3 for luminous late-type (super-)giants, in good agreement with observations.Comment: 12 pages, 4 figures, accepted by ApJ Letter

    Local Anisotropy of Fluids using Minkowski Tensors

    Full text link
    Statistics of the free volume available to individual particles have previously been studied for simple and complex fluids, granular matter, amorphous solids, and structural glasses. Minkowski tensors provide a set of shape measures that are based on strong mathematical theorems and easily computed for polygonal and polyhedral bodies such as free volume cells (Voronoi cells). They characterize the local structure beyond the two-point correlation function and are suitable to define indices 0βνa,b10\leq \beta_\nu^{a,b}\leq 1 of local anisotropy. Here, we analyze the statistics of Minkowski tensors for configurations of simple liquid models, including the ideal gas (Poisson point process), the hard disks and hard spheres ensemble, and the Lennard-Jones fluid. We show that Minkowski tensors provide a robust characterization of local anisotropy, which ranges from βνa,b0.3\beta_\nu^{a,b}\approx 0.3 for vapor phases to βνa,b1\beta_\nu^{a,b}\to 1 for ordered solids. We find that for fluids, local anisotropy decreases monotonously with increasing free volume and randomness of particle positions. Furthermore, the local anisotropy indices βνa,b\beta_\nu^{a,b} are sensitive to structural transitions in these simple fluids, as has been previously shown in granular systems for the transition from loose to jammed bead packs

    A mechanism for the non-Fermi-liquid behavior in CeCu_{6-x}Au_x

    Full text link
    We propose an explanation for the recently observed non-Fermi-liquid behavior of metallic alloys CeCu_{6-x}Au_x: near x=0.1, the specific heat c is proportional to T \ln (T_0/T) and the resistivity increases linearly with temperature T over a wide range of T. These features follow from a model in which three-dimensional conduction electrons are coupled to two-dimensional critical ferromagnetic fluctuations near the quantum critical point, x_{c}=0.1. This picture is motivated by the neutron scattering data in the ordered phase (x=0.2) and is consistent with the observed phase diagram.Comment: 4 pages, LaTeX, 3 figure

    The unique skeleton of siliceous sponges (Porifera; Hexactinellida and Demospongiae) that evolved first from the Urmetazoa during the Proterozoic: a review

    Get PDF
    Sponges (phylum Porifera) had been considered as an enigmatic phylum, prior to the analysis of their genetic repertoire/tool kit. Already with the isolation of the first adhesion molecule, galectin, it became clear that the sequences of sponge cell surface receptors and of molecules forming the intracellular signal transduction pathways triggered by them, share high similarity with those identified in other metazoan phyla. These studies demonstrated that all metazoan phyla, including Porifera, originate from one common ancestor, the Urmetazoa. The sponges evolved prior to the Ediacaran-Cambrian boundary (542 million years ago [myr]) during two major &quot;snowball earth events&quot;, the Sturtian glaciation (710 to 680 myr) and the Varanger-Marinoan ice ages (605 to 585 myr). During this period the ocean was richer in silica due to the silicate weathering. The oldest sponge fossils (Hexactinellida) have been described from Australia, China and Mongolia and are thought to have existed coeval with the diverse Ediacara fauna. Only little younger are the fossils discovered in the Sansha section in Hunan (Early Cambrian; China). It has been proposed that only the sponges possessed the genetic repertoire to cope with the adverse conditions, e.g. temperature-protection molecules or proteins protecting them against ultraviolet radiation. <br><br> The skeletal elements of the Hexactinellida (model organisms <i>Monorhaphis chuni</i> and <i>Monorhaphis intermedia</i> or <i>Hyalonema sieboldi</i>) and Demospongiae (models <i>Suberites domuncula</i> and <i>Geodia cydonium</i>), the spicules, are formed enzymatically by the anabolic enzyme silicatein and the catabolic enzyme silicase. Both, the spicules of Hexactinellida and of Demospongiae, comprise a central axial canal and an axial filament which harbors the silicatein. After intracellular formation of the first lamella around the channel and the subsequent extracellular apposition of further lamellae the spicules are completed in a net formed of collagen fibers. <br><br> The data summarized here substantiate that with the finding of silicatein a new aera in the field of bio/inorganic chemistry started. For the first time strategies could be formulated and experimentally proven that allow the formation/synthesis of inorganic structures by organic molecules. These findings are not only of importance for the further understanding of basic pathways in the body plan formation of sponges but also of eminent importance for applied/commercial processes in a sustainable use of biomolecules for novel bio/inorganic materials

    Scaling of magnetic fluctuations near a quantum phase transition

    Full text link
    We use inelastic neutron scattering to measure the magnetic fluctuations in a single crystal of the heavy fermion alloy CeCu_5.9Au_0.1 close to the antiferromagnetic quantum critical point. The energy and temperature-dependent spectra obey (E/T) scaling at Q near (1,0,0). The neutron data and earlier bulk susceptibility are consistent with the form 1/X ~ f(Q)+(-iE+bT)^a, with an anomalous exponent a=0.8. We confirm the earlier observation of quasi-low dimensionality and show how both the magnetic fluctuations and the thermodynamics can be understood in terms of a quantum Lifshitz point.Comment: Latex file with two postscript figure

    Climate change mitigation in aging societies: Motivational and cognitive aspects

    Get PDF
    The success of mitigating climate change depends on actions taken within the upcoming four decades. In Western societies, this timeframe coincides with a demographic shift increasing the age of the median voter and decision maker. The willingness to contribute to climate change mitigation may decrease with age since the benefi ts may lie beyond the life span whereas the costs are immediate. In several experimental studies, we investigate cognitive limitations and motivational factors in relation to climate change mitigation. In a fi rst set of studies subjects are given the chance to invest up to 10€ into the reduction of CO2 via the EU ETS. Contrary to theoretical considerations, we fi nd evidence for a strong and positive effect of age. Furthermore we show that social cues can be used to in uence contributions. Moreover we demonstrate that independent of age most subjects are able to understand complex stock flow problems if the mode of presentation is adequate. System thinking ability is not firmly linked with a motivation to contribute to climate change mitigation. In a training study we show however that an increase of information about climate change can lead to a reduction of contributions
    corecore