18,154 research outputs found
Numerical thermo-elasto-plastic analysis of residual stresses on different scales during cooling of hot forming parts
In current research, more and more attention is paid to the understanding of residual stress states as well as the application of targeted residual stresses to extend e.g. life time or stiffness of a part. In course of that, the numerical simulation and analysis of the forming process of components, which goes along with the evolution of residual stresses, play an important role. In this contribution, we focus on the residual stresses arising from the austenite-to-martensite transformation at microscopic and mesoscopic level of a Cr-alloyed steel. A combination of a Multi-Phase-Field model and a two-scale Finite Element simulation is utilized for numerical analysis. A first microscopic simulation considers the lattice change, such that the results can be homogenized and applied on the mesoscale. Based on this result, a polycrystal consisting of a certain number of austenitic grains is built and the phase transformation from austenite to martensite is described with respect to the mesoscale. Afterwards, in a two-scale Finite Element simulation the plastic effects are considered and resulting residual stress states are computed
Nature and strength of bonding in a crystal of semiconducting nanotubes: van der Waals density functional calculations and analytical results
The dispersive interaction between nanotubes is investigated through ab
initio theory calculations and in an analytical approximation. A van der Waals
density functional (vdW-DF) [Phys. Rev. Lett. 92, 246401 (2004)] is used to
determine and compare the binding of a pair of nanotubes as well as in a
nanotube crystal. To analyze the interaction and determine the importance of
morphology, we furthermore compare results of our ab initio calculations with a
simple analytical result that we obtain for a pair of well-separated nanotubes.
In contrast to traditional density functional theory calculations, the vdW-DF
study predicts an intertube vdW bonding with a strength that is consistent with
recent observations for the interlayer binding in graphitics. It also produce a
nanotube wall-to-wall separation which is in very good agreement with
experiments. Moreover, we find that the vdW-DF result for the nanotube-crystal
binding energy can be approximated by a sum of nanotube-pair interactions when
these are calculated in vdW-DF. This observation suggests a framework for an
efficient implementation of quantum-physical modeling of the CNT bundling in
more general nanotube bundles, including nanotube yarn and rope structures.Comment: 10 pages, 4 figure
High-precision epsilon expansions of single-mass-scale four-loop vacuum bubbles
In this article we present a high-precision evaluation of the expansions in
\e=(4-d)/2 of (up to) four-loop scalar vacuum master integrals, using the
method of difference equations developed by S. Laporta. We cover the complete
set of `QED-type' master integrals, i.e. those with a single mass scale only
(i.e. ) and an even number of massive lines at each vertex.
Furthermore, we collect all that is known analytically about four-loop
`QED-type' masters, as well as about {\em all} single-mass-scale vacuum
integrals at one-, two- and three-loop order.Comment: 25 pages, uses axodraw.st
Four-Loop Decoupling Relations for the Strong Coupling
We compute the matching relation for the strong coupling constant within the
framework of QCD up to four-loop order. This allows a consistent five-loop
running (once the function is available to this order) taking into
account threshold effects. As a side product we obtain the effective coupling
of a Higgs boson to gluons with five-loop accuracy.Comment: 11 page
Three-loop matching coefficients for hot QCD: Reduction and gauge independence
We perform an integral reduction for the 3-loop effective gauge coupling and
screening mass of QCD at high temperatures, defined as matching coefficients
appearing in the dimensionally reduced effective field theory (EQCD).
Expressing both parameters in terms of a set master (sum-) integrals, we show
explicit gauge parameter independence. The lack of suitable methods for solving
the comparatively large number of master integrals forbids the complete
evaluation at the moment. Taking one generic class of masters as an example, we
highlight the calculational techniques involved. The full result would allow to
improve on one of the classic probes for the convergence of the weak-coupling
expansion at high temperatures, namely the comparison of full and effective
theory determinations of the spatial string tension. Furthermore, the full
result would also allow to determine one new contribution of order O(g**7) to
the pressure of hot QCD.Comment: 19 pages, 2 figures. v2: new Section 6 discussing applications, to
match journal versio
Metric for attractor overlap
We present the first general metric for attractor overlap (MAO) facilitating
an unsupervised comparison of flow data sets. The starting point is two or more
attractors, i.e., ensembles of states representing different operating
conditions. The proposed metric generalizes the standard Hilbert-space distance
between two snapshots to snapshot ensembles of two attractors. A reduced-order
analysis for big data and many attractors is enabled by coarse-graining the
snapshots into representative clusters with corresponding centroids and
population probabilities. For a large number of attractors, MAO is augmented by
proximity maps for the snapshots, the centroids, and the attractors, giving
scientifically interpretable visual access to the closeness of the states. The
coherent structures belonging to the overlap and disjoint states between these
attractors are distilled by few representative centroids. We employ MAO for two
quite different actuated flow configurations: (1) a two-dimensional wake of the
fluidic pinball with vortices in a narrow frequency range and (2)
three-dimensional wall turbulence with broadband frequency spectrum manipulated
by spanwise traveling transversal surface waves. MAO compares and classifies
these actuated flows in agreement with physical intuition. For instance, the
first feature coordinate of the attractor proximity map correlates with drag
for the fluidic pinball and for the turbulent boundary layer. MAO has a large
spectrum of potential applications ranging from a quantitative comparison
between numerical simulations and experimental particle-image velocimetry data
to the analysis of simulations representing a myriad of different operating
conditions.Comment: 33 pages, 20 figure
The Parkes HI Zone of Avoidance Survey
A blind HI survey of the extragalactic sky behind the southern Milky Way has
been conducted with the multibeam receiver on the 64-m Parkes radio telescope.
The survey covers the Galactic longitude range 212 < l < 36 and Galactic
latitudes |b| < 5, and yields 883 galaxies to a recessional velocity of 12,000
km/s. The survey covers the sky within the HIPASS area to greater sensitivity,
finding lower HI-mass galaxies at all distances, and probing more completely
the large-scale structures at and beyond the distance of the Great Attractor.
Fifty-one percent of the HI detections have an optical/NIR counterpart in the
literature. A further 27% have new counterparts found in existing, or newly
obtained, optical/NIR images. The counterpart rate drops in regions of high
foreground stellar crowding and extinction, and for low-HI mass objects. Only
8% of all counterparts have a previous optical redshift measurement. A notable
new galaxy is HIZOA J1353-58, a possible companion to the Circinus galaxy.
Merging this catalog with the similarly-conducted northern extension (Donley et
al. 2005), large-scale structures are delineated, including those within the
Puppis and Great Attractor regions, and the Local Void. Several
newly-identified structures are revealed here for the first time. Three new
galaxy concentrations (NW1, NW2 and NW3) are key in confirming the diagonal
crossing of the Great Attractor Wall between the Norma cluster and the CIZA
J1324.7-5736 cluster. Further contributors to the general mass overdensity in
that area are two new clusters (CW1 and CW2) in the nearer Centaurus Wall, one
of which forms part of the striking 180 deg (100/h Mpc) long filament that
dominates the southern sky at velocities of ~3000 km/s, and the suggestion of a
further Wall at the Great Attractor distance at slightly higher longitudes.Comment: Published in Astronomical Journal 9 February 2016 (accepted 26
September 2015); 42 pages, 7 tables, 18 figures, main figures data tables
only available in the on-line version of journa
- …
