3,305 research outputs found

    Physics Potential of a Radio Surface Array at the South Pole (ARENA 2018)

    Full text link
    A surface array of radio antennas will enhance the performance of the IceTop array and enable new, complementary science goals. First, the accuracy for cosmic-ray air showers will be increased since the radio array provides a calorimetric measurement of the electromagnetic component and is sensitive to the position of the shower maximum. This enhanced accuracy can be used to better measure the mass composition, to search for possible mass-dependent anisotropies in the arrival directions of cosmic rays, and for more thorough tests of hadronic interaction models. Second, the sensitivity of the radio array to inclined showers will increase the sky coverage for cosmic-ray measurements. Third, the radio array can be used to search for PeV photons from the Galactic Center. Since IceTop is planned to be enhanced by a scintillator array in the near future, a radio extension sharing the same infrastructure can be installed with minimal additional effort and excellent scientific prospects. The combination of ice-Cherenkov, scintillation, and radio detectors at IceCube will provide unprecedented accuracy for the study of highenergy Galactic cosmic rays.Comment: Proceedings of 8th ARENA 2018, to appear in EPJ Wo

    Enhancing the cosmic-ray mass sensitivity of air-shower arrays by combining radio and muon detectors

    Get PDF
    The muonic and electromagnetic components of air showers are sensitive to the mass of the primary cosmic particle. The sizes of the components can be measured with particle detectors on ground, and the electromagnetic component in addition indirectly via its radio emission in the atmosphere. The electromagnetic particles do not reach the ground for very inclined showers. On the contrary, the atmosphere is transparent for the radio emission and its footprint on ground increases with the zenith angle. Therefore, the radio technique offers a reliable detection over the full range of zenith angles, and in particular for inclined showers. In this work, the mass sensitivity of a combination of the radio emission with the muons is investigated in a case study for the site of the Pierre Auger Observatory using CORSIKA Monte Carlo simulations of showers in the EeV energy range. It is shown, that the radio-muon combination features superior mass separation power in particular for inclined showers, when compared to established mass observables such as a combination of muons and electrons or the shower maximum Xmax. Accurate measurements of the energy-dependent mass composition of ultra-high energy cosmic rays are essential to understand their still unknown origin. Thus, the combination of muon and radio detectors can enhance the scientific performance of future air-shower arrays and offers a promising upgrade option for existing arrays

    Instruments and Methods for the Radio Detection of High Energy Cosmic Rays

    Get PDF

    Air Shower Detection by Arrays of Radio Antennas (ISVHECRI 2018)

    Get PDF
    Antenna arrays are beginning to make important contributions to high energy astroparticle physics supported by recent progress in the radio technique for air showers. This article provides an update to my more extensive review published in Prog. Part. Nucl. Phys. 93 (2017) 1 [arXiv: 1607.08781]. It focuses on current and planned radio arrays for atmospheric particle cascades, and briefly references to a number of evolving prototype experiments in other media, such as ice. While becoming a standard technique for cosmic-ray nuclei today, in future radio detection may drive the field for all type of primary messengers at PeV and EeV energies, including photons and neutrinos. In cosmic-ray physics accuracy becomes increasingly important in addition to high statistics. Various antenna arrays have demonstrated that they can compete in accuracy for the arrival direction, energy and position of the shower maximum with traditional techniques. The combination of antennas and particles detectors in one array is a straight forward way to push the total accuracy for high-energy cosmic rays for low additional cost. In particular the combination of radio and muon detectors will not only enhance the accuracy for the cosmic-ray mass composition, but also increase the gamma-hadron separation and facilitate the search for PeV and EeV photons. Finally, the radio technique can be scaled to large areas providing the huge apertures needed for ultra-high-energy neutrino astronomy.Comment: Proceedings of the 20th ISVHECRI 2018, Nagoya, Japan (to appear in EPJ WoC
    • …
    corecore