7 research outputs found

    New Insight into Li+Dynamics in Lithium Bimetal Phosphate

    Get PDF
    Substitution of iron by other transition metals within the remarkably stable olivine framework is of interest considering the expected gain in energy density. However, manganese rich olivine materials suffer from sluggish redox kinetics, leading to electrochemical performances at high current densities which are below expectations. The source of the kinetic limitations is not clear, with multiple processes having been proposed, including low bulk electronic conductivity, structural instability of Mn3+ and a phase transition mechanism. This study employed 7Li MAS NMR relaxation techniques to indirectly probe Li+ dynamics using various stoichiometry of chemically prepared Li x MnyFe1-yPO4 (0 ≤ (x, y) ≤ 1). Focusing on the particle level, the aim was to understand how the different crystal phases, alongside the Mn structural contribution, influence Li+ transport at each stage of the oxidation process. Significantly, the formation of an olivine solid solution with vacancies within this progression gave rise to a faster 7Li transverse relaxation derived from superior Li+ motion

    Carded recycled carbon fiber mats for the production of thermoset composites via infusion/compression molding

    No full text
    The use of carbon fiber reinforced thermoset composites has doubled in the last decade raising questions about the waste generated from manufacturing and at end-of-life, especially in the aircraft industry. In this study, 2.5 cm long carbon fibers were recovered from thermoset composite waste using a commercial scale pyrolysis process. Scanning electron microscopy, density measurements, single filament tensile testing as well as micro-droplet testing were performed to characterize the morphology, mechanical properties, and surface adhesion of the fibers. The recycled fibers appeared to be mostly undamaged and clean, exhibiting comparable mechanical properties to virgin carbon fibers. A carding process followed by an ultrasound treatment produced randomly aligned recycled fiber mats. These mats were used to fabricate composite plates, with fiber volume fractions up to 40 %, by infusion / compression molding. The mechanical properties of the plates were evaluated by tensile and flexural testing, and were found to be comparable to an equivalent containing virgin carbon fibers. Copyright \ua9 2013 SAE International.Peer reviewed: YesNRC publication: Ye
    corecore