16 research outputs found

    Budget-balanced and strategy-proof auctions for multi-passenger ridesharing

    Full text link
    Ridesharing and ridesourcing services have become widespread, and pricing the rides is a crucial problem for these systems. We propose and analyze a budget-balanced and strategy-proof auction, the Weighted Minimum Surplus (WMS) auction, for the dynamic ridesharing problem with multiple passengers per ride. Under the assumption of downward closed alternatives, we obtain lower bounds for the surplus welfare and surplus profit of the WMS auction. We also propose and analyze a budget-balanced version of the well-known VCG mechanism, the VCGs\mathrm{VCG}_s. Encouraging experimental results were obtained for both the WMS auction and the VCGs\mathrm{VCG}_s.Comment: 27 pages with 1 figur

    Local-Search Based Heuristics for Advertisement Scheduling

    Full text link
    In the MAXSPACE problem, given a set of ads A, one wants to place a subset A' of A into K slots B_1, ..., B_K of size L. Each ad A_i in A has size s_i and frequency w_i. A schedule is feasible if the total size of ads in any slot is at most L, and each ad A_i in A' appears in exactly w_i slots. The goal is to find a feasible schedule that maximizes the space occupied in all slots. We introduce MAXSPACE-RDWV, a MAXSPACE generalization with release dates, deadlines, variable frequency, and generalized profit. In MAXSPACE-RDWV each ad A_i has a release date r_i >= 1, a deadline d_i >= r_i, a profit v_i that may not be related with s_i and lower and upper bounds w^min_i and w^max_i for frequency. In this problem, an ad may only appear in a slot B_j with r_i <= j <= d_i, and the goal is to find a feasible schedule that maximizes the sum of values of scheduled ads. This paper presents some algorithms based on meta-heuristics GRASP, VNS, Local Search, and Tabu Search for MAXSPACE and MAXSPACE-RDWV. We compare our proposed algorithms with Hybrid-GA proposed by Kumar et al. (2006). We also create a version of Hybrid-GA for MAXSPACE-RDWV and compare it with our meta-heuristics. Some meta-heuristics, such as VNS and GRASP+VNS, have better results than Hybrid-GA for both problems. In our heuristics, we apply a technique that alternates between maximizing and minimizing the fullness of slots to obtain better solutions. We also applied a data structure called BIT to the neighborhood computation in MAXSPACE-RDWV and showed that this enabled ours algorithms to run more iterations

    Mathematical Models and Exact Algorithms for the Colored Bin Packing Problem

    Full text link
    This paper focuses on exact approaches for the Colored Bin Packing Problem (CBPP), a generalization of the classical one-dimensional Bin Packing Problem in which each item has, in addition to its length, a color, and no two items of the same color can appear consecutively in the same bin. To simplify modeling, we present a characterization of any feasible packing of this problem in a way that does not depend on its ordering. Furthermore, we present four exact algorithms for the CBPP. First, we propose a generalization of Val\'erio de Carvalho's arc flow formulation for the CBPP using a graph with multiple layers, each representing a color. Second, we present an improved arc flow formulation that uses a more compact graph and has the same linear relaxation bound as the first formulation. And finally, we design two exponential set-partition models based on reductions to a generalized vehicle routing problem, which are solved by a branch-cut-and-price algorithm through VRPSolver. To compare the proposed algorithms, a varied benchmark set with 574 instances of the CBPP is presented. Results show that the best model, our improved arc flow formulation, was able to solve over 62% of the proposed instances to optimality, the largest of which with 500 items and 37 colors. While being able to solve fewer instances in total, the set-partition models exceeded their arc flow counterparts in instances with a very small number of colors

    Approximation algorithms for the MAXSPACE advertisement problem

    Full text link
    In the MAXSPACE problem, given a set of ads A, one wants to schedule a subset A' of A into K slots B_1, ..., B_K of size L. Each ad A_i in A has a size s_i and a frequency w_i. A schedule is feasible if the total size of ads in any slot is at most L, and each ad A_i in A' appears in exactly w_i slots. The goal is to find a feasible schedule that maximizes the sum of the space occupied by all slots. We introduce a generalization called MAXSPACE-R in which each ad A_i also has a release date r_i >= 1, and may only appear in a slot B_j with j >= r_i. We also introduce a generalization of MAXSPACE-R called MAXSPACE-RD in which each ad A_i also has a deadline d_i <= K, and may only appear in a slot B_j with r_i <= j <= d_i. These parameters model situations where a subset of ads corresponds to a commercial campaign with an announcement date that may expire after some defined period. We present a 1/9-approximation algorithm for MAXSPACE-R and a polynomial-time approximation scheme for MAXSPACE-RD when K is bounded by a constant. This is the best factor one can expect, since MAXSPACE is NP-hard, even if K = 2

    Computing the Largest Bond of a Graph

    Get PDF
    A bond of a graph G is an inclusion-wise minimal disconnecting set of G, i.e., bonds are cut-sets that determine cuts [S,VS] of G such that G[S] and G[VS] are both connected. Given s,t in V(G), an st-bond of G is a bond whose removal disconnects s and t. Contrasting with the large number of studies related to maximum cuts, there are very few results regarding the largest bond of general graphs. In this paper, we aim to reduce this gap on the complexity of computing the largest bond and the largest st-bond of a graph. Although cuts and bonds are similar, we remark that computing the largest bond of a graph tends to be harder than computing its maximum cut. We show that Largest Bond remains NP-hard even for planar bipartite graphs, and it does not admit a constant-factor approximation algorithm, unless P = NP. We also show that Largest Bond and Largest st-Bond on graphs of clique-width w cannot be solved in time f(w) x n^{o(w)} unless the Exponential Time Hypothesis fails, but they can be solved in time f(w) x n^{O(w)}. In addition, we show that both problems are fixed-parameter tractable when parameterized by the size of the solution, but they do not admit polynomial kernels unless NP subseteq coNP/poly

    Algorithms for the Bin Packing Problem with Scenarios

    Full text link
    This paper presents theoretical and practical results for the bin packing problem with scenarios, a generalization of the classical bin packing problem which considers the presence of uncertain scenarios, of which only one is realized. For this problem, we propose an absolute approximation algorithm whose ratio is bounded by the square root of the number of scenarios times the approximation ratio for an algorithm for the vector bin packing problem. We also show how an asymptotic polynomial-time approximation scheme is derived when the number of scenarios is constant. As a practical study of the problem, we present a branch-and-price algorithm to solve an exponential model and a variable neighborhood search heuristic. To speed up the convergence of the exact algorithm, we also consider lower bounds based on dual feasible functions. Results of these algorithms show the competence of the branch-and-price in obtaining optimal solutions for about 59% of the instances considered, while the combined heuristic and branch-and-price optimally solved 62% of the instances considered
    corecore