11 research outputs found

    Treatment of glioblastoma in Greenlandic patients

    No full text
    ABSTRACTGlioblastoma (GBM), WHO grade IV, is the most common primary malignant brain tumour among adults with a devastating overall survival of 14–22 months. Standard treatment of GBM includes maximum safe resection, radiotherapy plus concomitant and adjuvant temozolomide (TMZ), given over a period of approximately 9 months. Treatment and follow-up for Greenlandic patients with GBM are managed at Rigshospitalet (RH), Copenhagen. Greenlandic GBM patients, therefore, travel back and forth to RH, often unaccompanied, and challenged by cognitive failure or other symptoms from their disease and/or treatment. Few Greenlandic patients are diagnosed with GBM annually, but considering the poor prognosis and short remaining lifespan, it would be preferable to limit their travels. TMZ is administrated as capsules. Health personnel at Queen Ingrid’s Hospital (DIH), Nuuk, are trained in treating other oncological diseases and handling side effects. Hence, it could be investigated whether administration of adjuvant TMZ at DIH could be feasible after personnel education as well as economic consideration and compensation, in close collaboration with neuro oncologists at RH. In this article, we describe the Greenlandic cancer treatment, and the typical workflow from diagnosis of GBM to treatment to progression

    Additional file 2: Figure S2. of Fractionated palliative thoracic radiotherapy in non-small cell lung cancer – futile or worth-while?

    No full text
    Cox regression analysis showing correlation between OS and age > or <70 years from prescription of PTR to death. There was a trend towards better OS and high age, but this was not statistical significant. Age > 70 years had a HR = 0.79 (95% CI: 0.58-1.09), p = 0.15. (DOCX 25 kb

    Additional file 3: Figure S3. of Fractionated palliative thoracic radiotherapy in non-small cell lung cancer – futile or worth-while?

    No full text
    Cox regression analysis showing correlation between OS and radiotherapy schedules 25Gy/5F or 30Gy/10F from prescription of PTR to death. There was a trend towards better OS with 30Gy/10F but this was not statistical significant. 30Gy/10F had a HR = 0.74 (95% CI: 0.52-1.04), p = 0.08 (DOCX 25 kb

    Tumor mutational burden and purity adjustment before and after treatment with temozolomide in 27 paired samples of glioblastoma:a prospective study

    No full text
    Treatment of glioblastoma (GBM) remains a challenging task, with limited treatment options, none offering a cure. Immune therapy has proven effective across different cancers with remarkable response rates. Tumor mutational burden (TMB) is a marker of response, but technical and methodological differences in TMB estimates have made a proper assessment and comparison challenging. Here, we analyzed a prospective collection of paired samples from 35 patients with newly diagnosed GBM, all of whom were wild‐type (WT) for isocitrate dehydrogenase, before and after treatment with radiotherapy and temozolomide. Seven patients (20%) had O6‐methylguanine‐DNA methyltransferase‐methylated tumors. Six patients (17%) had two relapse surgeries, and tissue from all three surgeries was collected. We found that accurate evaluation of TMB was confounded by high variability in the cancer cell fraction of relapse samples. To ameliorate this, we developed a model to adjust for tumor purity based on the relative density distribution of variant allele frequencies in each primary–relapse pair. Additionally, we examined the mutation spectra of shared and private mutations. After tumor purity adjustment, we found TMB comparison reliable in tumors with tumor purity between 15% and 40%, resulting in 27/35 patients (77.1%). TMB remained unchanged from 0.65 mutations per megabase (Mb) to 0.67/Mb before and after treatment, respectively. Examination of the mutation spectra revealed a dominance of C > T transitions at CpG sites in both shared and relapse‐private mutations, consistent with cytosine deamination and the clock‐like mutational signature 1. We present and apply a cellularity correction approach that enables more accurate assessment of TMB in paired tumor samples. We did not find a significant increase in TMB after correcting for cancer cell fraction. Our study raises significant concerns when determining TMB. Although a small sample size, corrected TMB can have a clinical significance when stratifying patients to experimental treatment, for example, immune checkpoint therapy
    corecore