8,385 research outputs found
Quicksort with unreliable comparisons: a probabilistic analysis
We provide a probabilistic analysis of the output of Quicksort when
comparisons can err.Comment: 29 pages, 3 figure
Experimental determination of the degree of quantum polarisation of continuous variable states
We demonstrate excitation-manifold resolved polarisation characterisation of
continuous-variable (CV) quantum states. In contrast to traditional
characterisation of polarisation that is based on the Stokes parameters, we
experimentally determine the Stokes vector of each excitation manifold
separately. Only for states with a given photon number does the methods
coincide. For states with an indeterminate photon number, for example Gaussian
states, the employed method gives a richer and more accurate description. We
apply the method both in theory and in experiment to some common states to
demonstrate its advantages.Comment: 5 page
Fast recovery from node compromise in wireless sensor networks
Wireless Sensor Networks (WSNs) are susceptible to a wide range of security attacks in hostile environments due to the limited processing and energy capabilities of sensor nodes. Consequently, the use of WSNs in mission critical applications requires reliable detection and fast recovery from these attacks. While much research has been devoted to detecting security attacks, very little attention has been paid yet to the recovery task. In this paper, we present a novel mechanism that is based on dynamic network reclustering and node reprogramming for recovering from node compromise. In response to node compromise, the proposed recovery approach reclusters the network excluding compromised nodes; thus allowing normal network operation while initiating node recovery procedures. We propose a novel reclustering algorithm that uses 2-hop neighbourhood information for this purpose. For node reprogramming we propose the modified Deluge protocol. The proposed node recovery mechanism is both decentralized and scalable. Moreover, we demonstrate through its implementation on a TelosB-based sensor network testbed that the proposed recovery method performs well in a low-resource WSN.<br /
Idiopathic orthostatic hypotension: Recent data (eleven cases) and review of the literature
Eight cases of Shy-Drager syndrome and three of Bradbury-Eggleston idiopathic orthostatic hypotension were examined. In all cases, examination of circulatory reflexes showed major dysfunction of the sympathetic vasoconstrictor system. Anomalies in the vagal cardiomoderator system were less constant. Normal urinary elimination of catecholamines was recorded daily. Characteristically, no elevation of blood or urine norepinephrine levels were found in orthostatism. Insulin hypoglycemia normally raised urinary adrenalin elimination in three of ten patients. Plasma dopa-beta-hydroxylase activity was normal. Renin-angiotensin-aldosterone system showed variable activity at basal state but usually rose during orthostatism. On the average, very low homovanillic acid levels were found in cerebrospinal fluid before and after probenecid; hydroxyindolacetic acid was normal. Cerebral autoregulation had deteriorated in two of four cases. Physiopathologically the two clinical types are indistinguishable with or without central neurological signs
Self-forces on extended bodies in electrodynamics
In this paper, we study the bulk motion of a classical extended charge in
flat spacetime. A formalism developed by W. G. Dixon is used to determine how
the details of such a particle's internal structure influence its equations of
motion. We place essentially no restrictions (other than boundedness) on the
shape of the charge, and allow for inhomogeneity, internal currents,
elasticity, and spin. Even if the angular momentum remains small, many such
systems are found to be affected by large self-interaction effects beyond the
standard Lorentz-Dirac force. These are particularly significant if the
particle's charge density fails to be much greater than its 3-current density
(or vice versa) in the center-of-mass frame. Additional terms also arise in the
equations of motion if the dipole moment is too large, and when the
`center-of-electromagnetic mass' is far from the `center-of-bare mass' (roughly
speaking). These conditions are often quite restrictive. General equations of
motion were also derived under the assumption that the particle can only
interact with the radiative component of its self-field. These are much simpler
than the equations derived using the full retarded self-field; as are the
conditions required to recover the Lorentz-Dirac equation.Comment: 30 pages; significantly improved presentation; accepted for
publication in Phys. Rev.
The Trans-Pacific Partnership Agreement: Looking Ahead to the Next Steps
Pressure has been building for the conclusion of the 12-country Trans-Pacific Partnership (TPP) negotiations. Getting the deal done is important, but the TPP is not just another free trade agreement (FTA). It represents the chance to set a trade agenda for the future across a wide range of topics for countries throughout the Asia-Pacific region. This means that the agreement should not be settled in haste. More importantly, it also means that key decisions need to be reached about broader issues related to the institutional structure of the TPP. These decisions must be made now, before the deal is closed, on issues such as how to create the TPP as a living agreement, the formation of a TPP Secretariat, and the clarification of entry conditions for future members such as the People’s Republic of China (PRC). These choices must be made deliberately and carefully even while officials are struggling with reaching closure on the most highly sensitive issues still remaining in the agreement. It will not be easy, but wise decisions are necessary now to ensure the long-term success of the TPP
Efficient and perfect state transfer in quantum chains
We present a communication protocol for chains of permanently coupled qubits
which achieves perfect quantum state transfer and which is efficient with
respect to the number chains employed in the scheme. The system consists of
uncoupled identical quantum chains. Local control (gates, measurements) is only
allowed at the sending/receiving end of the chains. Under a quite general
hypothesis on the interaction Hamiltonian of the qubits a theorem is proved
which shows that the receiver is able to asymptotically recover the messages by
repetitive monitoring of his qubits.Comment: 6 pages, 2 figures; new material adde
Self-forces from generalized Killing fields
A non-perturbative formalism is developed that simplifies the understanding
of self-forces and self-torques acting on extended scalar charges in curved
spacetimes. Laws of motion are locally derived using momenta generated by a set
of generalized Killing fields. Self-interactions that may be interpreted as
arising from the details of a body's internal structure are shown to have very
simple geometric and physical interpretations. Certain modifications to the
usual definition for a center-of-mass are identified that significantly
simplify the motions of charges with strong self-fields. A derivation is also
provided for a generalized form of the Detweiler-Whiting axiom that pointlike
charges should react only to the so-called regular component of their
self-field. Standard results are shown to be recovered for sufficiently small
charge distributions.Comment: 21 page
Search for weakly interacting sub-eV particles with the OSQAR laser-based experiment: results and perspectives
Recent theoretical and experimental studies highlight the possibility of new
fundamental particle physics beyond the Standard Model that can be probed by
sub-eV energy experiments. The OSQAR photon regeneration experiment looks for
"Light Shining through a Wall" (LSW) from the quantum oscillation of optical
photons into "Weakly Interacting Sub-eV Particles" (WISPs), like axion or
axion-like particles (ALPs), in a 9 T transverse magnetic field over the
unprecedented length of m. No excess of events has been
detected over the background. The di-photon couplings of possible new light
scalar and pseudo-scalar particles can be constrained in the massless limit to
be less than GeV. These results are very close to the
most stringent laboratory constraints obtained for the coupling of ALPs to two
photons. Plans for further improving the sensitivity of the OSQAR experiment
are presented.Comment: 7 pages, 7 figure
New Exclusion Limits for the Search of Scalar and Pseudoscalar Axion-Like Particles from "Light Shining Through a Wall"
Physics beyond the Standard Model predicts the possible existence of new
particles that can be searched at the low energy frontier in the sub-eV range.
The OSQAR photon regeneration experiment looks for "Light Shining through a
Wall" from the quantum oscillation of optical photons into "Weakly Interacting
Sub-eV Particles", such as axion or Axion-Like Particles (ALPs), in a 9 T
transverse magnetic field over the unprecedented length of m.
In 2014, this experiment has been run with an outstanding sensitivity, using an
18.5 W continuous wave laser emitting in the green at the single wavelength of
532 nm. No regenerated photons have been detected after the wall, pushing the
limits for the existence of axions and ALPs down to an unprecedented level for
such a type of laboratory experiment. The di-photon couplings of possible
pseudo-scalar and scalar ALPs can be constrained in the nearly massless limit
to be less than GeV and
GeV, respectively, at 95% Confidence Level.Comment: 6 pages, 6 figure
- …