50 research outputs found

    A low-memory parallel version of Matsuo, Chao and Tsujii's algorithm

    No full text
    International audienceWe present an algorithm based on the birthday paradox, which is a low-memory parallel counterpart to the algorithm of Matsuo, Chao and Tsujii. This algorithm computes the group order of the Jacobian of a genus 2 curve over a finite field for which the characteristic polynomial of the Frobenius endomorphism is known modulo some integer. The main tool is a 2-dimensional pseudo-random walk that allows to heuristically choose random elements in a 2-dimensional space. We analyze the expected running time based on heuristics that we validate by computer experiments. Compared with the original algorithm by Matsuo, Chao and Tsujii, we lose a factor of about 3 in running time, but the memory requirement drops from several GB to almost nothing. Our method is general and can be applied in other contexts to transform a baby-step giant-step approach into a low memory algorithm

    Modular equations for hyperelliptic curves

    Get PDF
    We define modular equations describing the l-torsion subgroups of the Jacobian of a hyperelliptic curve. Over a finite base field, we prove factorization properties that extend the well-known results used in Atkin's improvement of Schoof's genus 1 point counting algorithm

    Construction of secure random curves of genus 2 over prime fields

    No full text
    International audienceFor counting points of Jacobians of genus 2 curves defined over large prime fields, the best known method is a variant of Schoof's algorithm. We present several improvements on the algorithms described by Gaudry and Harley in 2000. In particular we rebuild the symmetry that had been broken by the use of Cantor's division polynomials and design a faster division by 2 and a division by 3. Combined with the algorithm by Matsuo, Chao and Tsujii, our implementation can count the points on a Jacobian of size 164 bits within about one week on a PC

    Fast algorithms for computing isogenies between elliptic curves

    Get PDF
    We survey algorithms for computing isogenies between elliptic curves defined over a field of characteristic either 0 or a large prime. We introduce a new algorithm that computes an isogeny of degree ℓ\ell (ℓ\ell different from the characteristic) in time quasi-linear with respect to ℓ\ell. This is based in particular on fast algorithms for power series expansion of the Weierstrass ℘\wp-function and related functions

    Fast Computation of Minimal Interpolation Bases in Popov Form for Arbitrary Shifts

    Get PDF
    We compute minimal bases of solutions for a general interpolation problem, which encompasses Hermite-Pad\'e approximation and constrained multivariate interpolation, and has applications in coding theory and security. This problem asks to find univariate polynomial relations between mm vectors of size σ\sigma; these relations should have small degree with respect to an input degree shift. For an arbitrary shift, we propose an algorithm for the computation of an interpolation basis in shifted Popov normal form with a cost of O ~(mω−1σ)\mathcal{O}\tilde{~}(m^{\omega-1} \sigma) field operations, where ω\omega is the exponent of matrix multiplication and the notation O ~(⋅)\mathcal{O}\tilde{~}(\cdot) indicates that logarithmic terms are omitted. Earlier works, in the case of Hermite-Pad\'e approximation and in the general interpolation case, compute non-normalized bases. Since for arbitrary shifts such bases may have size Θ(m2σ)\Theta(m^2 \sigma), the cost bound O ~(mω−1σ)\mathcal{O}\tilde{~}(m^{\omega-1} \sigma) was feasible only with restrictive assumptions on the shift that ensure small output sizes. The question of handling arbitrary shifts with the same complexity bound was left open. To obtain the target cost for any shift, we strengthen the properties of the output bases, and of those obtained during the course of the algorithm: all the bases are computed in shifted Popov form, whose size is always O(mσ)\mathcal{O}(m \sigma). Then, we design a divide-and-conquer scheme. We recursively reduce the initial interpolation problem to sub-problems with more convenient shifts by first computing information on the degrees of the intermediate bases.Comment: 8 pages, sig-alternate class, 4 figures (problems and algorithms
    corecore