15 research outputs found

    JunB is required for endothelial cell morphogenesis by regulating core-binding factor β

    Get PDF
    The molecular mechanism triggering the organization of endothelial cells (ECs) in multicellular tubules is mechanistically still poorly understood. We demonstrate that cell-autonomous endothelial functions of the AP-1 subunit JunB are required for proper endothelial morphogenesis both in vivo in mouse embryos with endothelial-specific ablation of JunB and in in vitro angiogenesis models. By cDNA microarray analysis, we identified core-binding factor β (CBFβ), which together with the Runx proteins forms the heterodimeric core-binding transcription complex CBF, as a novel JunB target gene. In line with our findings, expression of the CBF target MMP-13 was impaired in JunB-deficient ECs. Reintroduction of CBFβ into JunB-deficient ECs rescued the tube formation defect and MMP-13 expression, indicating an important role for CBFβ in EC morphogenesis

    Th2 cell-specific cytokine expression and allergen-induced airway inflammation depend on JunB

    No full text
    Naïve CD4+ T cells differentiate into effector T helper 1 (Th1) or Th2 cells, which are classified by their specific set of cytokines. Here we demonstrate that loss of JunB in in vitro polarized Th2 cells led to a dysregulated expression of the Th2-specific cytokines IL-4 and IL-5. These cells produce IFN-γ and express T-bet, the key regulator of Th1 cells. In line with the essential role of Th2 cells in the pathogenesis of allergic asthma, mice with JunB-deficient CD4+ T cells exhibited an impaired allergen-induced airway inflammation. This study demonstrates novel functions of JunB in the development of Th2 effector cells, for a normal Th2 cytokine expression pattern and for a complete Th2-dependent immune response in mice

    JUNB suppresses distant metastasis by influencing the initial metastatic stage

    No full text
    The complex interactions between cells of the tumor microenvironment and cancer cells are considered a major determinant of cancer progression and metastasis. Yet, our understanding of the mechanisms of metastatic disease is not sufficient to successfully treat patients with advanced-stage cancer. JUNB is a member of the AP-1 transcription factor family shown to be frequently deregulated in human cancer and associated with invasion and metastasis. A strikingly high stromal JUNB expression in human breast cancer samples prompted us to functionally investigate the consequences of JUNB loss in cells of the tumor microenvironment on cancer progression and metastasis in mice. To adequately mimic the clinical situation, we applied a syngeneic spontaneous breast cancer metastasis model followed by primary tumor resection and identified stromal JUNB as a potent suppressor of distant metastasis. Comprehensive characterization of the JUNB-deficient tumor microenvironment revealed a strong influx of myeloid cells into primary breast tumors and lungs at early metastatic stage. In these infiltrating neutrophils, BV8 and MMP9, proteins promoting angiogenesis and tissue remodeling, were specifically upregulated in a JUNB-dependent manner. Taken together, we established stromal JUNB as a strong suppressor of distant metastasis. Consequently, therapeutic strategies targeting AP-1 should be carefully designed not to interfere with stromal JUNB expression as this may be detrimental for cancer patients

    Altered endochondral bone development in matrix metalloproteinase 13-deficient mice

    No full text
    The assembly and degradation of extracellular matrix (ECM) molecules are crucial processes during bone development. In this study, we show that ECM remodeling is a critical rate-limiting step in endochondral bone formation. Matrix metalloproteinase (MMP) 13 (collagenase 3) is poised to play a crucial role in bone formation and remodeling because of its expression both in terminal hypertrophic chondrocytes in the growth plate and in osteoblasts. Moreover, a mutation in the human MMP13 gene causes the Missouri variant of spondyloepimetaphyseal dysplasia. Inactivation of Mmp13 in mice through homologous recombination led to abnormal skeletal growth plate development. Chondrocytes differentiated normally but their exit from the growth plate was delayed. The severity of the Mmp13-null growth plate phenotype increased until about 5 weeks and completely resolved by 12 weeks of age. Mmp13-null mice had increased trabecular bone, which persisted for months. Conditional inactivation of Mmp13 in chondrocytes and osteoblasts showed that increases in trabecular bone occur independently of the improper cartilage ECM degradation caused by Mmp13 deficiency in late hypertrophic chondrocytes. Our studies identified the two major components of the cartilage ECM, collagen type II and aggrecan, as in vivo substrates for MMP13. We found that degradation of cartilage collagen and aggrecan is a coordinated process in which MMP13 works synergistically with MMP9. Mice lacking both MMP13 and MMP9 had severely impaired endochondral bone, characterized by diminished ECM remodeling, prolonged chondrocyte survival, delayed vascular recruitment and defective trabecular bone formation (resulting in drastically shortened bones). These data support the hypothesis that proper ECM remodeling is the dominant rate-limiting process for programmed cell death, angiogenesis and osteoblast recruitment during normal skeletal morphogenesis

    Ultralarge von Willebrand Factor Fibers Mediate Luminal Staphylococcus aureus Adhesion to an Intact Endothelial Cell Layer Under Shear Stress

    No full text
    <p>Background</p><p>During pathogenesis of infective endocarditis, Staphylococcus aureus adherence often occurs without identifiable preexisting heart disease. However, molecular mechanisms mediating initial bacterial adhesion to morphologically intact endocardium are largely unknown.</p><p>Methods and Results</p><p>Perfusion of activated human endothelial cells with fluorescent bacteria under high-shear-rate conditions revealed 95% attachment of the S aureus by ultralarge von Willebrand factor (ULVWF). Flow experiments with VWF deletion mutants and heparin indicate a contribution of the A-type domains of VWF to bacterial binding. In this context, analyses of different bacterial deletion mutants suggest the involvement of wall teichoic acid but not of staphylococcal protein A. The presence of inactivated platelets and serum increased significantly ULVWF-mediated bacterial adherence. ADAMTS13 (a disintegrin and metalloproteinase with thrombospondin motifs 13) caused a dose-dependent reduction of bacterial binding and a reduced length of ULVWF, but single cocci were still tethered by ULVWF at physiological levels of ADAMTS13. To further prove the role of VWF in vivo, we compared wild-type mice with VWF knockout mice. Binding of fluorescent bacteria was followed in tumor necrosis factor--stimulated tissue by intravital microscopy applying the dorsal skinfold chamber model. Compared with wild-type mice (n=6), we found less bacteria in postcapillary (60 +/- 6 versus 32 +/- 5 bacteria) and collecting venules (48 +/- 5 versus 18 +/- 4 bacteria; P</p><p>Conclusions</p><p>Our data provide the first evidence that ULVWF contributes to the initial pathogenic step of S aureus-induced endocarditis in patients with an apparently intact endothelium. An intervention reducing the ULVWF formation with heparin or ADAMTS13 suggests novel therapeutic options to prevent infective endocarditis.</p>

    JunB defines functional and structural integrity of the epidermo-pilosebaceous unit in the skin

    No full text
    Transcription factors ensure skin homeostasis via tight regulation of distinct resident stem cells. Here we report that JunB, a member of the AP-1 transcription factor family, regulates epidermal stem cells and sebaceous glands through balancing proliferation and differentiation of progenitors and by suppressing lineage infidelity. JunB deficiency in basal progenitors results in a dermatitis-like syndrome resembling seborrheic dermatitis harboring structurally and functionally impaired sebaceous glands with a globally altered lipid profile. A fate switch occurs in a subset of JunB deficient epidermal progenitors during wound healing resulting in de novo formation of sebaceous glands. Dysregulated Notch signaling is identified to be causal for this phenotype. In fact, pharmacological inhibition of Notch signaling can efficiently restore the lineage drift, impaired epidermal differentiation and disrupted barrier function in JunB conditional knockout mice. These findings define an unprecedented role for JunB in epidermal-pilosebaceous stem cell homeostasis and its pathology
    corecore