987 research outputs found

    Wick's theorem for q-deformed boson operators

    Get PDF
    In this paper combinatorial aspects of normal ordering arbitrary words in the creation and annihilation operators of the q-deformed boson are discussed. In particular, it is shown how by introducing appropriate q-weights for the associated ``Feynman diagrams'' the normally ordered form of a general expression in the creation and annihilation operators can be written as a sum over all q-weighted Feynman diagrams, representing Wick's theorem in the present context.Comment: 9 page

    The Kondo lattice model with correlated conduction electrons

    Full text link
    We investigate a Kondo lattice model with correlated conduction electrons. Within dynamical mean-field theory the model maps onto an impurity model where the host has to be determined self-consistently. This impurity model can be derived from an Anderson-Hubbard model both by equating the low-energy excitations of the impurity and by a canonical transformation. On the level of dynamical mean-field theory this establishes the connection of the two lattice models. The impurity model is studied numerically by an extension of the non-crossing approximation to a two-orbital impurity. We find that with decreasing temperature the conduction electrons first form quasiparticles unaffected by the presence of the lattice of localized spins. Then, reducing the temperature further, the particle-hole symmetric model turns into an insulator. The quasiparticle peak in the one-particle spectral density splits and a gap opens. The size of the gap increases when the correlations of the conduction electrons become stronger. These findings are similar to the behavior of the Anderson-Hubbard model within dynamical mean-field theory and are obtained with much less numerical effort.Comment: 7 pages RevTeX with 3 ps figures, accepted by PR

    A Bayesian model for longitudinal count data with non-ignorable dropout

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73907/1/j.1467-9876.2008.00628.x.pd

    Magnetic Impurity in a Metal with Correlated Conduction Electrons: An Infinite Dimensions Approach

    Full text link
    We consider the Hubbard model with a magnetic Anderson impurity coupled to a lattice site. In the case of infinite dimensions, one-particle correlations of the impurity electron are described by the effective Hamiltonian of the two-impurity system. One of the impurities interacts with a bath of free electrons and represents the Hubbard lattice, and the other is coupled to the first impurity by the bare hybridization interaction. A study of the effective two-impurity Hamiltonian in the frame of the 1/N expansion and for the case of a weak conduction-electron interaction (small U) reveals an enhancement of the usual exponential Kondo scale. However, an intermediate interaction (U/D = 1 - 3), treated by the variational principle, leads to the loss of the exponential scale. The Kondo temperature T_K of the effective two-impurity system is calculated as a function of the hybridization parameter and it is shown that T_K decreases with an increase of U. The non-Fermi-liquid character of the Kondo effect in the intermediate regime at the half filling is discussed.Comment: 12 pages with 8 PS figures, RevTe

    Periodic Anderson model with correlated conduction electrons

    Full text link
    We investigate a periodic Anderson model with interacting conduction electrons which are described by a Hubbard-type interaction of strength U_c. Within dynamical mean-field theory the total Hamiltonian is mapped onto an impurity model, which is solved by an extended non-crossing approximation. We consider the particle-hole symmetric case at half-filling. Similar to the case U_c=0, the low-energy behavior of the conduction electrons at high temperatures is essentially unaffected by the f-electrons and for small U_c a quasiparticle peak corresponding to the Hubbard model evolves first. These quasiparticles screen the f-moments when the temperature is reduced further, and the system turns into an insulator with a tiny gap and flat bands. The formation of the quasiparticle peak is impeded by increasing either U_c or the c-f hybridization. Nevertheless almost dispersionless bands emerge at low temperature with an increased gap, even in the case of initially insulating host electrons. The size of the gap in the one-particle spectral density at low temperatures provides an estimate for the low-energy scale and increases as U_c increases.Comment: 11 pages RevTeX with 13 ps figures, accepted by PR

    Magnetic impurity coupled to interacting conduction electrons

    Full text link
    We consider a magnetic impurity which interacts by hybridization with a system of weakly correlated electrons and determine the energy of the ground state by means of an 1/N_f expansion. The correlations among the conduction electrons are described by a Hubbard Hamiltonian and are treated to lowest order in the interaction strength. We find that their effect on the Kondo temperature, T_K, in the Kondo limit is twofold: First, the position of the impurity level is shifted due to the reduction of charge fluctuations, which reduces T_K. Secondly, the bare Kondo exchange coupling is enhanced as spin fluctuations are enlarged. In total, T_K increases. Both corrections require intermediate states beyond the standard Varma-Yafet ansatz. This shows that the Hubbard interaction does not just provide quasiparticles, which hybridize with the impurity, but also renormalizes the Kondo coupling.Comment: ReVTeX 19 pages, 3 uuenconded postscript figure

    Enhanced Local Moment Formation in a Chiral Luttinger Liquid

    Full text link
    We derive here a stability condition for a local moment in the presence of an interacting sea of conduction electrons. The conduction electrons are modeled as a Luttinger liquid in which chirality and spin are coupled. We show that an Anderson-U defect in such an interacting system can be transformed onto a nearly-Fermi liquid problem. We find that correlations among the conduction electrons stabilize the local moment phase. A Schrieffer-Wolff transformation is then performed which results in an anisotropic exchange interaction indicative of the Kondo effect in a Luttinger liquid. The ground-state properties of this model are then equivalent to those of the Kondo model in a Luttinger liquid.Comment: 11 pages, no figure

    Effects of fluoxetine on the oral environment of bulimics

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73809/1/j.1399-302X.1993.tb00545.x.pd

    Generalized Heisenberg algebras and k-generalized Fibonacci numbers

    Full text link
    It is shown how some of the recent results of de Souza et al. [1] can be generalized to describe Hamiltonians whose eigenvalues are given as k-generalized Fibonacci numbers. Here k is an arbitrary integer and the cases considered by de Souza et al. corespond to k=2.Comment: 8 page
    • …
    corecore