33 research outputs found
Endothelial ICAM-1 Adhesome Recruits CD44 for Optimal Transcellular Migration of Human CTLs
The endothelial lining of blood vessels is covered with a thin polysaccharide coat called the glycocalyx. This layer of polysaccharides contains hyaluronan that forms a protective coat on the endothelial surface. Upon inflammation, leukocytes leave the circulation and enter inflamed tissue by crossing inflamed endothelial cells, mediated by adhesion molecules such as ICAM-1/CD54. To what extent the glycocalyx participates in the regulation of leukocyte transmigration is not clear. During extravasation, leukocyte integrins cluster ICAM-1, resulting in the recruitment of a number of intracellular proteins and subsequent downstream effects in the endothelial cells. For our studies, we used primary human endothelial and immune cells. With an unbiased proteomics approach, we identified the full ICAM-1 adhesome and identified 93 (to our knowledge) new subunits of the ICAM-1 adhesome. Interestingly, we found the glycoprotein CD44 as part of the glycocalyx to be recruited to clustered ICAM-1 specifically. Our data demonstrate that CD44 binds hyaluronan to the endothelial surface, where it locally concentrates and presents chemokines that are essential for leukocytes to cross the endothelial lining. Taken together, we discover a link between ICAM-1 clustering and hyaluronan-mediated chemokine presentation by recruiting hyaluronan to sites of leukocyte adhesion via CD44
Deterministic actin waves as generators of cell polarization cues
Dendritic cells "patrol" the human body to detect pathogens. In their search, dendritic cells perform a random walk by amoeboid migration. The efficiency of pathogen detection depends on the properties of the random walk. It is not known how the dendritic cells control these properties. Here, we quantify dendritic cell migration under well-defined 2-dimensional confinement and in a 3-dimensional collagen matrix through recording their long-term trajectories. We find 2 different migration states: persistent migration, during which the dendritic cells move along curved paths, and diffusive migration, which is characterized by successive sharp turns. These states exhibit differences in the actin distributions. Our theoretical and experimental analyses indicate that this kind of motion can be generated by spontaneous actin polymerization waves that contribute to dendritic cell polarization and migration. The relative distributions of persistent and diffusive migration can be changed by modification of the molecular actin filament nucleation and assembly rates. Thus, dendritic cells can control their migration patterns and adapt to specific environments. Our study offers an additional perspective on how dendritic cells tune their searches for pathogens