34 research outputs found

    Формування стратегії фінансування зобов’язань при здійсненні комерційними банками інвестиційної діяльності

    Get PDF
    Проведено аналіз мікро- і макроекономічних аспектів інвестиційної діяльності комерційних банків. Досліджені проблеми формування ефективної інвестиційної політики банків. У статті наведена постановка задачі узгодження фінансових потоків при різних обмеженнях

    ...maar werkt het ook in theorie?

    Get PDF

    Stochastic lag time in nucleated linear self-assembly

    No full text
    Protein aggregation is of great importance in biology, e.g., in amyloid fibrillation. The aggregation processes that occur at the cellular scale must be highly stochastic in nature because of the statistical number fluctuations that arise on account of the small system size at the cellular scale. We study the nucleated reversible self-assembly of monomeric building blocks into polymer-like aggregates using the method of kinetic Monte Carlo. Kinetic Monte Carlo, being inherently stochastic, allows us to study the impact of fluctuations on the polymerization reactions. One of the most important characteristic features in this kind of problem is the existence of a lag phase before self-assembly takes off, which is what we focus attention on. We study the associated lag time as a function of system size and kinetic pathway. We find that the leading order stochastic contribution to the lag time before polymerization commences is inversely proportional to the system volume for large-enough system size for all nine reaction pathways tested. Finite-size corrections to this do depend on the kinetic pathwa

    Continuum percolation of carbon nanotubes in polymeric and colloidal media

    No full text
    We apply continuum connectedness percolation theory to realistic carbon nanotube systems and predict how bending flexibility, length polydispersity, and attractive interactions between them influence the percolation threshold, demonstrating that it can be used as a predictive tool for designing nanotube-based composite materials. We argue that the host matrix in which the nanotubes are dispersed controls this threshold through the interactions it induces between them during processing and through the degree of connectedness that must be set by the tunneling distance of electrons, at least in the context of conductivity percolation. This provides routes to manipulate the percolation threshold and the level of conductivity in the final product. We find that the percolation threshold of carbon nanotubes is very sensitive to the degree of connectedness, to the presence of small quantities of longer rods, and to very weak attractive interactions between them. Bending flexibility or tortuosity, on the other hand, has only a fairly weak impact on the percolation threshold

    Continuum percolation of polydisperse nanofillers

    Get PDF
    We show that a generalized connectedness percolation theory can be made tractable for a large class of anisotropic particle mixtures that potentially contain an infinite number of components. By applying our methodology to carbon-nanotube composites, we explain the huge variations found in the onset of electrical conduction in terms of a percolation threshold that turns out to be sensitive to polydispersity in particle length and diameter. The theory also allows us to model the influence of the presence of nonconductive species in the mixture, such as is the case for single-walled nanotubes, showing that these raise the percolation threshold proportionally to their abundance

    Connectivity, not density, dictates percolation in nematic liquid crystals of slender nanoparticles

    No full text
    We show by means of continuum theory and simulations that geometric percolation in uniaxial nematics of hard slender particles is fundamentally different from that in isotropic dispersions. In the nematic, percolation depends only very weakly on the density and is, in essence, determined by a distance criterion that defines connectivity. This unexpected finding has its roots in the nontrivial coupling between the density and the degree of orientational order that dictate the mean number of particle contacts. Clusters in the nematic are much longer than wide, suggesting the use of nematics for nanocomposites with strongly anisotropic transport properties

    Connectedness percolation of hard convex polygonal rods and platelets

    No full text
    \u3cp\u3eThe properties of polymer composites with nanofiller particles change drastically above a critical filler density known as the percolation threshold. Real nanofillers, such as graphene flakes and cellulose nanocrystals, are not idealized disks and rods but are often modeled as such. Here we investigate the effect of the shape of the particle cross section on the geometric percolation threshold. Using connectedness percolation theory and the second-virial approximation, we analytically calculate the percolation threshold of hard convex particles in terms of three single-particle measures. We apply this method to polygonal rods and platelets and find that the universal scaling of the percolation threshold is lowered by decreasing the number of sides of the particle cross section. This is caused by the increase of the surface area to volume ratio with decreasing number of sides.\u3c/p\u3

    Geometric percolation of hard nanorods: The interplay of spontaneous and externally induced uniaxial particle alignment

    No full text
    \u3cp\u3eWe present a numerical study on geometric percolation in liquid dispersions of hard slender colloidal particles subject to an external orienting field. In the formulation and liquid-state processing of nanocomposite materials, particle alignment by external fields such as electric, magnetic, or flow fields is practically inevitable and often works against the emergence of large nanoparticle networks. Using continuum percolation theory in conjunction with Onsager theory, we investigate how the interplay between externally induced alignment and the spontaneous symmetry breaking of the uniaxial nematic phase affects cluster formation in nanoparticle dispersions. It is known that particle alignment by means of a density increase or by an external field may result in a breakdown of an already percolating network. As a result, percolation can be limited to a small region of the phase diagram only. Here, we demonstrate that the existence and shape of such a percolation island in the phase diagram crucially depends on the connectivity length - a critical distance defining direct connections between neighboring particles. For some values of the connectivity range, we observe unusual re-entrance effects, in which a system-spanning network forms and breaks down multiple times with increasing particle density.\u3c/p\u3

    The different faces of mass action in virus assembly

    No full text
    \u3cp\u3eThe spontaneous encapsulation of genomic and non-genomic polyanions by coat proteins of simple icosahedral viruses is driven, in the first instance, by electrostatic interactions with polycationic RNA binding domains on these proteins. The efficiency with which the polyanions can be encapsulated in vitro, and presumably also in vivo, must in addition be governed by the loss of translational and mixing entropy associated with co-assembly, at least if this co-assembly constitutes a reversible process. These forms of entropy counteract the impact of attractive interactions between the constituents and hence they counteract complexation. By invoking mass action-type arguments and a simple model describing electrostatic interactions, we show how these forms of entropy might settle the competition between negatively charged polymers of different molecular weights for co-assembly with the coat proteins. In direct competition, mass action turns out to strongly work against the encapsulation of RNAs that are significantly shorter, which is typically the case for non-viral (host) RNAs. We also find that coat proteins favor forming virus particles over nonspecific binding to other proteins in the cytosol even if these are present in vast excess. Our results rationalize a number of recent in vitro co-assembly experiments showing that short polyanions are less effective at attracting virus coat proteins to form virus-like particles than long ones do, even if both are present at equal weight concentrations in the assembly mixture.\u3c/p\u3

    Self-organization of tip-functionalized elongated colloidal particles

    Get PDF
    \u3cp\u3eWeakly attractive interactions between the tips of rodlike colloidal particles affect their liquid-crystal phase behavior due to a subtle interplay between enthalpy and entropy. Here we employ molecular dynamics simulations on semiflexible, repulsive bead-spring chains where one of the two end beads attract each other. We calculate the phase diagram as a function of both the volume fraction of the chains and the strength of the attractive potential. We identify a large number of phases that include isotropic, nematic, smectic-A, smectic-B, and crystalline states. For tip attraction energies lower than the thermal energy, our results are qualitatively consistent with experimental findings: We find that an increase of the attraction strength shifts the nematic to smectic-A phase transition to lower volume fractions, with only minor effect on the stability of the other phases. For sufficiently strong tip attraction, the nematic phase disappears completely, in addition leading to the destabilization of the isotropic phase. In order to better understand the underlying physics of these phenomena, we also investigate the clustering of the particles at their attractive tips and the effective molecular field experienced by the particles in the smectic-A phase. Based on these results, we argue that the clustering of the tips only affects the phase stability if lamellar structures ( micelles ) are formed. We find that an increase of the attraction strength increases the degree of order in the layered phases. Interestingly, we also find evidence for the existence of an antiferroelectric smectic-A phase transition induced by the interaction between the tips. A simple Maier-Saupe-McMillan model confirms our findings.\u3c/p\u3
    corecore