8 research outputs found

    Preparing for Crew-Control of Surface Robots from Orbit

    Get PDF
    Since 2010, the European Space Agency (ESA) and the National Aeronautics and Space Administration (NASA) have been developing robots that can be remotely operated on planetary surfaces by astronauts in orbiting spacecraft. A primary objective of this work has been to test telerobotic technologies that are needed for future deep-space human exploration missions. Specifically, ESA's Multi-Purpose End-To-End Robotic Operations Network (METERON) project and NASA's Human Exploration Telerobotics (HET) project are complementary initiatives that aim to validate communications, operations and robotic systems through a range of ground and flight experiments with humans and robots in the loop. Several experiments have already been successfully completed and others are now in preparation for flight

    ANALOG-1 ISS - The first part of an analogue mission to guide ESA's robotic moon exploration efforts

    Get PDF
    The METERON project is a European initiative to prepare for future human-robotic exploration missions to the Moon, Mars and other celestial bodies. The project aims to implement infrastructure and tools to test and evaluate communications, operations and robotic control strategies in the context of future exploration missions. It is in collaboration between three directorates of the European Space Agency (ESA); Human and Robotic Exploration (HRE), Technology, Engineering and Quality (TEC), Operations (OPS). This paper presents the first part of the on-going ANALOG-1 experiment which is the culmination of the METERON project, implementing the knowledge gained in the 12 distinct METERON experiments between 2011 and 2020. These all address aspects of teleoperating a robotic asset from an orbital platform, i.e. technical implementation, user interfaces, autonomy and operations. The ANALOG-1 technology demonstration and operations concept experiment is based upon the surface mission scenario segment of the notional EL3 sample return mission. This segment focuses on the control of a lunar surface robotic asset from the Earth and from the Lunar Gateway. In November 2019, the first part of this experiment was successfully completed from the ISS. It assessed the effectiveness of a state-of-the-art robotic control interface to control a complex mobile robot from orbit, as well as evaluating the scientific interactions, during robotic-assisted geology exploration, between crew in orbit and scientists on the ground. Luca Parmitano drove this robot in a lunar analogue site in the Netherlands, and controlled its arms, while he was on the ISS. For this experiment, a complex control station had been installed on the ISS, including a sigma.7 haptic device. This device allowed the astronaut to feel forces felt by the robotic arm. The experiment demonstrated the advantage of having an immersive control station and high level of robotic dexterity, with Luca finishing all his assigned and secondary geology targets ahead of time. The second part of Analog-1 extends the ISS experiment with a full ground-based analogue, in which further technical experiments and a full mission scenario will be played out. The analogue is in cooperation with the DLR ARCHES space demo mission, and includes a rover operations centre based at ESOC as well as an outdoor lunar analogue site on Mount Etna. The astronaut, in this case, is on ground. We expect to further demonstrate the advantages of a state-of-the art interface for both fully teleoperated and semi-autonomous rover and robotic arm control for lunar missions, in order to guide ESA's Moon exploration efforts

    METERON Analog-1: A Touch Remote

    Get PDF
    The METERON project (Multipurpose End-To-End Robotics Operations Network) was implemented by the European Space Agency as an initiative to prepare Europe for future humanrobotic exploration scenarios that in particular, focused on examination of the human-robotic partnership, and how this partnership could be optimized through an evaluation of the tools and methodologies utilized in the experiments in the domains of operations, communications and robotics (specifically with respect to control strategies)

    Impact of low denudation rates on soil chemical weathering intensity: A multiproxy approach

    No full text
    Quantifying the influence of denudation, i.e. physical erosion and chemical weathering, on soil weathering intensity is an important component for a comprehensive understanding of element biogeochemical cycles. The relation between the weathering intensity and the denudation rate is not clear and requires further investigation in a variety of climatic and erosional settings. Here, in the Betic Cordillera (southern Spain), we assess the soil chemical weathering intensity with a multiproxy approach combining different indicators of chemical weathering of the soil: the Total Reserve in Bases (TRB), the content in Fe-oxides, the quartz and clay content, the soil cation exchange capacity (CEC), and the silicon (Si) isotope composition of the clay-sized fraction. Our multiproxy approach demonstrates that in this semi-arid environment at low denudation rates, an increasing denudation rate decreases the soil weathering intensity, whereas Si mobility remains limited. Our results converge with previous conclusions based on chemical mass balance methods in the same geological setting. Mass balance methods, and particularly Chemical Depletion Fractions (CDF), are based on the immobility of a refractory element (commonly zirconium, Zr) relative to major cations in soils. Interestingly, our study suggests that a weathering index such as the TRB may provide a useful complement to assess soil chemical weathering intensity in eroding landscapes where the application of chemical mass balances may be hampered by potential Zr mobility in the soil or by heterogeneity of Zr concentrations in the bedrock.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore