19 research outputs found
Resonant Transfer and Excitation in Li-Like F Colliding with Hā
We have measured coincidences between x rays and projectiles that have captured one electron in F6+ + H2 collisions at projectile energies between 15 and 33 MeV. The cross sections for capture and simultaneous x-ray emission as a function of projectile energy show clear structures. Indications of an unexpectedly high population of high-n states predominantly formed by resonant transfer and excitation (RTE) were found. Above the Kln (n\u3e1) RTE resonance energies another maximum was observed
Angular Distribution of Auger Electrons Emitted through the Resonant Transfer and Excitation Process Following Oāµāŗ+He Collisions
This Letter reports the first measurements of the angular distribution of Auger electrons emitted from the decay of the (1s2s2p2)3D O4+** doubly excited state formed predominantly through resonant transfer and excitation (RTE) in collisions of 13-MeV O5+ projectiles with He. The (1s2s2p2)3D angular distribution is strongly peaked along the beam direction, in agreement with recent calculations of the RTE angle-dependent impulse approximation. Furthermore, interference effects between the RTE and the elastic target direct-ionization channels are observed
Electron-Electron Interactions in Transfer and Excitation in Fāøāŗ āā Collisions
We have measured projectile Auger electrons emitted after collisions of H-like F with H2. The cross sections for emission of KLL, KLM, KLN, and KLO Auger electrons show maxima as a function of the projectile energy. One maximum in the KLL emission cross section is due to resonant transfer and excitation. A second maximum in the cross section for KLL emission as well as the maxima in the emission cross section for the higher-n Auger electrons are attributed to a new transfer and excitation process. This involves excitation of a projectile electron by one target electron accompanied by the capture of a second target electron
Double Excitation of He by Fast Ions
Autoionization of He atoms following double excitation by electrons, protons, CQ+ (Q=4-6), and FQ+ (Q=7-9) ions has been studied. The electron-emission yields from the doubly excited 2s2(1S), 2s2p(1P), and 2p2(1P) states were measured at the reduced projectile energy of 1.5 MeV/nucleon for observation angles between 10Ā°and 60Ā°. The results indicate excitation to the 2s2(1S) and 2p2(1D) states increases as approximately Q3, while excitation to the 2s2p(1P) state varies as approximately Q2, where Q is the charge of the projectile. These charge dependences are significantly less than the Q4 dependence expected in the independent-electron model, suggesting the interaction between the two target electrons is important in creating the doubly excited states
Performance of an acousto-optic Bragg cell under ion microbeam irradiation
An acousto optic (AO) deflector composed of PbMoO{sub 4} was exposed to 4 MeV protons while operating under Bragg angle conditions. An ion beam in air of 1 mm width was directed normal to the crystal face and laser beam. Between exposures, the approximately 13 mm x 8.5 mm AO deflector was mechanically translated in two dimensions in front of the fixed ion beam. The AO diffraction efficiency was mapped and was observed to change as a function of ion beam location and dose rate. These effects are attributed to the induced change in the temperature distribution of the crystal, which changed the sonic velocity and refractive index. Similar effects were observed when the ion beam was directed at the acoustic transducer
Projectile Energy Loss in Multiply Ionizing Ion-Atom Collisions
The projectile energy loss for 7.5--25-MeV C6+,5+ and F6+ ions was measured for single collisions with He, Ne, Ar, and Kr as a function of the recoil-ion charge state and the projectile scattering. This energy loss was measured for collisions in which the projectile captured an electron and for those involving just direct ionization. We investigated and found a large average energy transfer (100--250 eV/electron) to the continuum electrons. A strong increase of the scattering angle with recoil-ion charge state was observed for both capture and direct ionization. The results imply that, for smaller impact parameters, higher recoil-ion charge states are produced and that higher energy losses are obtained. We observed a weak target-Z dependence of the energy loss. The results are compared with n-body classical-trajectory Monte Carlo calculations by Olson, semiclassical-approximation calculations by Schuch et al. [Nucl. Instrum. Methods Phys. Res. Sect. B 42, 566 (1989)], and the energy-deposition model
Population of Highly Excited Intermediate Resonance States by Electron Transfer and Excitation
Coincidences between two sulfur K x rays were detected from collisions of hydrogenlike S ions with H2 gas in the projectile energy range between 150 and 225 MeV. These K x rays are emitted in the decay of doubly excited states formed in the collisions via transfer and excitation. The excitation function for two coincident KĪ² transitions peaks at about 175 MeV, slightly above the expected KMM resonance energy for resonant transfer and excitation (RTE). This demonstrates the occurrence of ĪNā„2 transitions (i.e., KMM and higher resonances) in the RTE process. The cross sections for the population of the very highly excited states are higher than those predicted by theoretical calculations that use dielectronic recombination rates folded with the Compton profile for the bound electrons
Resonant Dielectronic and Direct Excitation in Crystal Channels
We have observed dielectronic and direct excitation of H-like S15+ and Ca19+ and He-like Ti20+ ions in silicon channels caused by collision with weakly bound target electrons which behave as a free-electron gas. As in vacuo, relaxation of the doubly excited states can occur radiatively leading to ions of decreased charge, but in a crystal channel collisional effects can cause double ionization. The effects are seen in both the x-ray yields and charge-state fractions, and, in the case of Ti20+, in charge-state x-ray coincidences
Qualification Strategies of Field Programmable Gate Arrays (FPGAs) for Space Application
This viewgraph document reviews the issue of using Field Programmable Gate Arrays (FPGAs) in Space Application, and the some of the strategies for qualifying the FPGA. Qualification and risk management of such complex systems requires new approaches. The paper presents a matrix approach to qualification has been presented that: - Complements historical specifications - Highlights the importance of device physics as a cornerstone to qualification. - Provides levels of risk management that expressly document trade offs. - Stresses the role of the FPGA vendor as team member in the development of modern spacecraft
Can Placement of Governmental Sector Jobs Spur Private Sector Employment and Performance?
We analyse the impact of establishment of governmental sector jobs on private sector employment based on Norwegian population-wide administrative-register data. Based on precise geographical information on the location of jobs, differential treatment intensities yield identification of causal effects. The results suggest that governmental employment has positive effects on private sector employment in the close proximity of the stimulus area. In the same area, we also observe positive short-term effects on wage growth and on firms' sales. Over time, only employment effects prevail. Two different types of placebo tests give support to the causal interpretation of the main results