2,891 research outputs found

    Bulk viscosity of the massive Gross-Neveu model

    Full text link
    A calculation of the bulk viscosity for the massive Gross-Neveu model at zero fermion chemical potential is presented in the large-NN limit. This model resembles QCD in many important aspects: it is asymptotically free, has a dynamically generated mass gap, and for zero bare fermion mass it is scale invariant at the classical level (broken through the trace anomaly at the quantum level). For our purposes, the introduction of a bare fermion mass is necessary to break the integrability of the model, and thus to be able to study momentum transport. The main motivation is, by decreasing the bare mass, to analyze whether there is a correlation between the maximum in the trace anomaly and a possible maximum in the bulk viscosity, as recently conjectured. After numerical analysis, I find that there is no direct correlation between these two quantities: the bulk viscosity of the model is a monotonously decreasing function of the temperature. I also comment on the sum rule for the spectral density in the bulk channel, as well as on implications of this analysis for other systems.Comment: v2: 3->3 processes included, conclusions unchanged. Comments and references added. Typos corrected. To appear in Phys. Rev.

    The Evolution of Juvenile Justice From the Book of Leviticus to Parens Patriae: The Next Step After In re Gault

    Get PDF
    Since the arrival of the Pilgrims, American jurisprudence has known that its law-breaking children must be treated differently than adults. How children are treated by the law raises ethical and constitutional issues. This Article questions the current approach, which applies adult due process protections to children who are unable to fully understand their constitutional rights and the consequences of waiving those rights. The authors propose new Miranda warnings and a Bill of Rights for Children to protect children and their constitutional right to due process under the law

    Stringy NJL and Gross-Neveu models at finite density and temperature

    Full text link
    Nonlocal stringy versions of the Nambu-Jona-Lasinio and Gross-Neveu models arise in a certain limit of holographic QCD. We analyze the phase structure at finite density and temperature at strong coupling in terms of probe branes in the gravity dual. Comparison with the phase structure of the local field theory models shows qualitative agreement with some aspects, and disagreement with others. Finally, we explain how to construct the Landau potentials for these models by taking the probe branes off-shell.Comment: 32 pages, uses JHEP3.cls; v2, references added, version to be submitted to JHE

    Fracton pairing mechanism for "strange" superconductors: Self-assembling organic polymers and copper-oxide compounds

    Full text link
    Self-assembling organic polymers and copper-oxide compounds are two classes of "strange" superconductors, whose challenging behavior does not comply with the traditional picture of Bardeen, Cooper, and Schrieffer (BCS) superconductivity in regular crystals. In this paper, we propose a theoretical model that accounts for the strange superconducting properties of either class of the materials. These properties are considered as interconnected manifestations of the same phenomenon: We argue that superconductivity occurs in the both cases because the charge carriers (i.e., electrons or holes) exchange {\it fracton excitations}, quantum oscillations of fractal lattices that mimic the complex microscopic organization of the strange superconductors. For the copper oxides, the superconducting transition temperature TcT_c as predicted by the fracton mechanism is of the order of 150\sim 150 K. We suggest that the marginal ingredient of the high-temperature superconducting phase is provided by fracton coupled holes that condensate in the conducting copper-oxygen planes owing to the intrinsic field-effect-transistor configuration of the cuprate compounds. For the gate-induced superconducting phase in the electron-doped polymers, we simultaneously find a rather modest transition temperature of (23)\sim (2-3) K owing to the limitations imposed by the electron tunneling processes on a fractal geometry. We speculate that hole-type superconductivity observes larger onset temperatures when compared to its electron-type counterpart. This promises an intriguing possibility of the high-temperature superconducting states in hole-doped complex materials. A specific prediction of the present study is universality of ac conduction for TTcT\gtrsim T_c.Comment: 12 pages (including separate abstract page), no figure

    Chiral helix in AdS/CFT with flavor

    Full text link
    The D3/D7 holographic model aims at a better approximation to QCD by adding to N=4 SYM theory N_f of N=2 supersymmetric hypermultiplets in the fundamental representation of SU(N_c) -- the "flavor fields" representing the quarks. Motivated by a recent observation of the importance of the Wess-Zumino-like (WZ) term for realizing the chiral magnetic effect within this model, we revisit the phase diagram of the finite temperature, massless D3/D7 model in the presence of external electric/magnetic fields and at finite chemical potential. We point out that the A-V-V triangle anomaly represented by the WZ term in the D7 brane probe action implies the existence of new phases that have been overlooked in the previous studies. In the case of an external magnetic field and at finite chemical potential, we find a "chiral helix" phase in which the U(1)_A angle of D7 brane embedding increases monotonically along the direction of the magnetic field -- this is a geometric realization of the chiral spiral phase in QCD. We also show that in the case of parallel electric and magnetic fields (E,B) there exists a phase in which the D7 brane spontaneously begins to rotate, so that the U(1)_A angle changes as a function of time -- this may be called the "spontaneous rotation" phase; it is a geometrical realization of a phase with non-zero chiral chemical potential. Our results call for a more thorough study of the (T,B,E,\mu) phase diagram of the massless D3/D7 model taking a complete account of the WZ term. We also speculate about the possible phase diagram in the massive case.Comment: 25 pages, 7 figure

    Cooper pairing and finite-size effects in a NJL-type four-fermion model

    Full text link
    Starting from a NJL-type model with N fermion species fermion and difermion condensates and their associated phase structures are considered at nonzero chemical potential μ\mu and zero temperature in spaces with nontrivial topology of the form S1S1S1S^1\otimes S^1\otimes S^1 and R2S1R^2\otimes S^1. Special attention is devoted to the generation of the superconducting phase. In particular, for the cases of antiperiodic and periodic boundary conditions we have found that the critical curve of the phase transitions between the chiral symmetry breaking and superconducting phases as well as the corresponding condensates and particle densities strongly oscillate vs λ1/L\lambda\sim 1/L, where LL is the length of the circumference S1S^1. Moreover, it is shown that at some finite values of LL the superconducting phase transition is shifted to smaller values both of μ\mu and particle density in comparison with the case of L=L=\infty.Comment: 13 pages, 13 figures; minor changes; new references added; version accepted to PR

    Outdoor learning spaces: the case of forest school

    Get PDF
    © 2017 The Author. Area published by John Wiley & Sons Ltd on behalf of Royal Geographical Society (with the Institute of British Geographers). This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.This paper contributes to the growing body of research concerning use of outdoor spaces by educators, and the increased use of informal and outdoor learning spaces when teaching primary school children. The research takes the example of forest school, a form of regular and repeated outdoor learning increasingly common in primary schools. This research focuses on how the learning space at forest school shapes the experience of children and forest school leaders as they engage in learning outside the classroom. The learning space is considered as a physical space, and also in a more metaphorical way as a space where different behaviours are permitted, and a space set apart from the national curriculum. Through semi-structured interviews with members of the community of practice of forest school leaders, the paper seeks to determine the significance of being outdoors on the forest school experience. How does this learning space differ from the classroom environment? What aspects of the forest school learning space support pupils’ experiences? How does the outdoor learning space affect teaching, and the dynamics of learning while at forest school? The research shows that the outdoor space provides new opportunities for children and teachers to interact and learn, and revealed how forest school leaders and children co-create a learning environment in which the boundaries between classroom and outdoor learning, teacher and pupil, are renegotiated to stimulate teaching and learning. Forest school practitioners see forest school as a separate learning space that is removed from the physical constraints of the classroom and pedagogical constraints of the national curriculum to provide a more flexible and responsive learning environment.Peer reviewe

    Mean Field Theory of Josephson Junction Arrays with Charge Frustration

    Full text link
    Using the path integral approach, we provide an explicit derivation of the equation for the phase boundary for quantum Josephson junction arrays with offset charges and non-diagonal capacitance matrix. For the model with nearest neighbor capacitance matrix and uniform offset charge q/2e=1/2q/2e=1/2, we determine, in the low critical temperature expansion, the most relevant contributions to the equation for the phase boundary. We explicitly construct the charge distributions on the lattice corresponding to the lowest energies. We find a reentrant behavior even with a short ranged interaction. A merit of the path integral approach is that it allows to provide an elegant derivation of the Ginzburg-Landau free energy for a general model with charge frustration and non-diagonal capacitance matrix. The partition function factorizes as a product of a topological term, depending only on a set of integers, and a non-topological one, which is explicitly evaluated.Comment: LaTex, 24 pages, 8 figure
    corecore