3 research outputs found
Harmonic oscillator in a background magnetic field in noncommutative quantum phase-space
We solve explicitly the two-dimensional harmonic oscillator and the harmonic
oscillator in a background magnetic field in noncommutative phase-space without
making use of any type of representation. A key observation that we make is
that for a specific choice of the noncommutative parameters, the time reversal
symmetry of the systems get restored since the energy spectrum becomes
degenerate. This is in contrast to the noncommutative configuration space where
the time reversal symmetry of the harmonic oscillator is always broken.Comment: 7 pages Late
Formulation, Interpretation and Application of non-Commutative Quantum Mechanics
In analogy with conventional quantum mechanics, non-commutative quantum
mechanics is formulated as a quantum system on the Hilbert space of
Hilbert-Schmidt operators acting on non-commutative configuration space. It is
argued that the standard quantum mechanical interpretation based on Positive
Operator Valued Measures, provides a sufficient framework for the consistent
interpretation of this quantum system. The implications of this formalism for
rotational and time reversal symmetry are discussed. The formalism is applied
to the free particle and harmonic oscillator in two dimensions and the physical
signatures of non commutativity are identified.Comment: 11 page
Supersymmetry breaking in noncommutative quantum mechanics
Supersymmetric quantum mechanics is formulated on a two dimensional
noncommutative plane and applied to the supersymmetric harmonic oscillator. We
find that the ordinary commutative supersymmetry is partially broken and only
half of the number of supercharges are conserved. It is argued that this
breaking is closely related to the breaking of time reversal symmetry arising
from noncommutativity