1,678 research outputs found
Revisiting the Fradkin-Vilkovisky Theorem
The status of the usual statement of the Fradkin-Vilkovisky theorem, claiming
complete independence of the Batalin-Fradkin-Vilkovisky path integral on the
gauge fixing "fermion" even within a nonperturbative context, is critically
reassessed. Basic, but subtle reasons why this statement cannot apply as such
in a nonperturbative quantisation of gauge invariant theories are clearly
identified. A criterion for admissibility within a general class of gauge
fixing conditions is provided for a large ensemble of simple gauge invariant
systems. This criterion confirms the conclusions of previous counter-examples
to the usual statement of the Fradkin-Vilkovisky theorem.Comment: 21 pages, no figures, to appear in Jnl. Phys.
Spectrum of the non-commutative spherical well
We give precise meaning to piecewise constant potentials in non-commutative
quantum mechanics. In particular we discuss the infinite and finite
non-commutative spherical well in two dimensions. Using this, bound-states and
scattering can be discussed unambiguously. Here we focus on the infinite well
and solve for the eigenvalues and eigenfunctions. We find that time reversal
symmetry is broken by the non-commutativity. We show that in the commutative
and thermodynamic limits the eigenstates and eigenfunctions of the commutative
spherical well are recovered and time reversal symmetry is restored
Harmonic oscillator in a background magnetic field in noncommutative quantum phase-space
We solve explicitly the two-dimensional harmonic oscillator and the harmonic
oscillator in a background magnetic field in noncommutative phase-space without
making use of any type of representation. A key observation that we make is
that for a specific choice of the noncommutative parameters, the time reversal
symmetry of the systems get restored since the energy spectrum becomes
degenerate. This is in contrast to the noncommutative configuration space where
the time reversal symmetry of the harmonic oscillator is always broken.Comment: 7 pages Late
Bound state energies and phase shifts of a non-commutative well
Non-commutative quantum mechanics can be viewed as a quantum system
represented in the space of Hilbert-Schmidt operators acting on non-commutative
configuration space. Within this framework an unambiguous definition can be
given for the non-commutative well. Using this approach we compute the bound
state energies, phase shifts and scattering cross sections of the non-
commutative well. As expected the results are very close to the commutative
results when the well is large or the non-commutative parameter is small.
However, the convergence is not uniform and phase shifts at certain energies
exhibit a much stronger then expected dependence on the non-commutative
parameter even at small values.Comment: 12 pages, 8 figure
- …