701 research outputs found

    Revisiting the Fradkin-Vilkovisky Theorem

    Get PDF
    The status of the usual statement of the Fradkin-Vilkovisky theorem, claiming complete independence of the Batalin-Fradkin-Vilkovisky path integral on the gauge fixing "fermion" even within a nonperturbative context, is critically reassessed. Basic, but subtle reasons why this statement cannot apply as such in a nonperturbative quantisation of gauge invariant theories are clearly identified. A criterion for admissibility within a general class of gauge fixing conditions is provided for a large ensemble of simple gauge invariant systems. This criterion confirms the conclusions of previous counter-examples to the usual statement of the Fradkin-Vilkovisky theorem.Comment: 21 pages, no figures, to appear in Jnl. Phys.

    Harmonic oscillator in a background magnetic field in noncommutative quantum phase-space

    Full text link
    We solve explicitly the two-dimensional harmonic oscillator and the harmonic oscillator in a background magnetic field in noncommutative phase-space without making use of any type of representation. A key observation that we make is that for a specific choice of the noncommutative parameters, the time reversal symmetry of the systems get restored since the energy spectrum becomes degenerate. This is in contrast to the noncommutative configuration space where the time reversal symmetry of the harmonic oscillator is always broken.Comment: 7 pages Late

    Spectrum of the non-commutative spherical well

    Get PDF
    We give precise meaning to piecewise constant potentials in non-commutative quantum mechanics. In particular we discuss the infinite and finite non-commutative spherical well in two dimensions. Using this, bound-states and scattering can be discussed unambiguously. Here we focus on the infinite well and solve for the eigenvalues and eigenfunctions. We find that time reversal symmetry is broken by the non-commutativity. We show that in the commutative and thermodynamic limits the eigenstates and eigenfunctions of the commutative spherical well are recovered and time reversal symmetry is restored

    On the Hamilton-Jacobi equation for second class constrained systems

    Full text link
    We discuss a general procedure for arriving at the Hamilton-Jacobi equation of second-class constrained systems, and illustrate it in terms of a number of examples by explicitely obtaining the respective Hamilton principal function, and verifying that it leads to the correct solution to the Euler-Lagrange equations.Comment: 17 pages, to appear in Ann. Phy

    Formulation, Interpretation and Application of non-Commutative Quantum Mechanics

    Full text link
    In analogy with conventional quantum mechanics, non-commutative quantum mechanics is formulated as a quantum system on the Hilbert space of Hilbert-Schmidt operators acting on non-commutative configuration space. It is argued that the standard quantum mechanical interpretation based on Positive Operator Valued Measures, provides a sufficient framework for the consistent interpretation of this quantum system. The implications of this formalism for rotational and time reversal symmetry are discussed. The formalism is applied to the free particle and harmonic oscillator in two dimensions and the physical signatures of non commutativity are identified.Comment: 11 page
    corecore