848 research outputs found

    The Hazen Mammoth (Mammuthus columbi), Prairie County, Arkansas

    Get PDF
    In May 1965, mammoth remains were exposed during the excavation of a borrow pit for construction of Interstate Highway 40, 2 mi northeast of Hazen, Prairie County, Arkansas. The proboscidian remains consisted of a skull with tusks, mandibles, atlas and other skeletal elements. The vertebra material was scattered over approximately 150 m (1,600 sq ft) but was confined to a layer of red clayey-silt 6.7 m (22 ft) below the surface. No additional fauna or flora was recovered. The mammoth remains are referred to Mammuthus columbi (Falconer, 1857) on the basis of characteristics of the dentition, particularly the comparison of index of hypsodonty to functional plate density. Mammuthus columbi was widely distributed in southeast North America during the late part of the Pleistocene Epoch (Sangamon-Wisconsin Stages)

    Harmonic oscillator in a background magnetic field in noncommutative quantum phase-space

    Full text link
    We solve explicitly the two-dimensional harmonic oscillator and the harmonic oscillator in a background magnetic field in noncommutative phase-space without making use of any type of representation. A key observation that we make is that for a specific choice of the noncommutative parameters, the time reversal symmetry of the systems get restored since the energy spectrum becomes degenerate. This is in contrast to the noncommutative configuration space where the time reversal symmetry of the harmonic oscillator is always broken.Comment: 7 pages Late

    Formulation, Interpretation and Application of non-Commutative Quantum Mechanics

    Full text link
    In analogy with conventional quantum mechanics, non-commutative quantum mechanics is formulated as a quantum system on the Hilbert space of Hilbert-Schmidt operators acting on non-commutative configuration space. It is argued that the standard quantum mechanical interpretation based on Positive Operator Valued Measures, provides a sufficient framework for the consistent interpretation of this quantum system. The implications of this formalism for rotational and time reversal symmetry are discussed. The formalism is applied to the free particle and harmonic oscillator in two dimensions and the physical signatures of non commutativity are identified.Comment: 11 page

    Variations on the Planar Landau Problem: Canonical Transformations, A Purely Linear Potential and the Half-Plane

    Get PDF
    The ordinary Landau problem of a charged particle in a plane subjected to a perpendicular homogeneous and static magnetic field is reconsidered from different points of view. The role of phase space canonical transformations and their relation to a choice of gauge in the solution of the problem is addressed. The Landau problem is then extended to different contexts, in particular the singular situation of a purely linear potential term being added as an interaction, for which a complete purely algebraic solution is presented. This solution is then exploited to solve this same singular Landau problem in the half-plane, with as motivation the potential relevance of such a geometry for quantum Hall measurements in the presence of an electric field or a gravitational quantum well

    On the role of twisted statistics in the noncommutative degenerate electron gas

    Full text link
    We consider the problem of a degenerate electron gas in the background of a uniformly distributed positive charge, ensuring overall neutrality of the system, in the presence of non-commutativity. In contrast to previous calculations that did not include twisted statistics, we find corrections to the ground state energy already at first order in perturbation theory when the twisted statistics is taken into account. These corrections arise since the interaction energy is sensitive to two particle correlations, which are modified for twisted anti-commutation relations

    Noncommutative quantum mechanics -- a perspective on structure and spatial extent

    Full text link
    We explore the notion of spatial extent and structure, already alluded to in earlier literature, within the formulation of quantum mechanics on the noncommutative plane. Introducing the notion of average position and its measurement, we find two equivalent pictures: a constrained local description in position containing additional degrees of freedom, and an unconstrained nonlocal description in terms of the position without any other degrees of freedom. Both these descriptions have a corresponding classical theory which shows that the concept of extended, structured objects emerges quite naturally and unavoidably there. It is explicitly demonstrated that the conserved energy and angular momentum contain corrections to those of a point particle. We argue that these notions also extend naturally to the quantum level. The local description is found to be the most convenient as it manifestly displays additional information about structure of quantum states that is more subtly encoded in the nonlocal, unconstrained description. Subsequently we use this picture to discuss the free particle and harmonic oscillator as examples.Comment: 25 pages, no figure

    The N=1 Supersymmetric Landau Problem and its Supersymmetric Landau Level Projections: the N=1 Supersymmetric Moyal-Voros Superplane

    Get PDF
    The N=1 supersymmetric invariant Landau problem is constructed and solved. By considering Landau level projections remaining non trivial under N=1 supersymmetry transformations, the algebraic structures of the N=1 supersymmetric covariant non(anti)commutative superplane analogue of the ordinary N=0 noncommutative Moyal-Voros plane are identified

    Calculation of the metric in the Hilbert space of a PT-symmetric model via the spectral theorem

    Full text link
    In a previous paper (arXiv:math-ph/0604055) we introduced a very simple PT-symmetric non-Hermitian Hamiltonian with real spectrum and derived a closed formula for the metric operator relating the problem to a Hermitian one. In this note we propose an alternative formula for the metric operator, which we believe is more elegant and whose construction -- based on a backward use of the spectral theorem for self-adjoint operators -- provides new insights into the nature of the model.Comment: LaTeX, 6 page

    Voros product and the Pauli principle at low energies

    Full text link
    Using the Voros star product, we investigate the status of the two particle correlation function to study the possible extent to which the previously proposed violation of the Pauli principle may impact at low energies. The results show interesting features which are not present in the computations made using the Moyal star product.Comment: 5 pages LateX, minor correction

    A (p,q)-deformed Landau problem in a spherical harmonic well: spectrum and noncommuting coordinates

    Get PDF
    A (p,q)-deformation of the Landau problem in a spherically symmetric harmonic potential is considered. The quantum spectrum as well as space noncommutativity are established, whether for the full Landau problem or its quantum Hall projections. The well known noncommutative geometry in each Landau level is recovered in the appropriate limit p,q=1. However, a novel noncommutative algebra for space coordinates is obtained in the (p,q)-deformed case, which could also be of interest to collective phenomena in condensed matter systems.Comment: 9 pages, no figures; updated reference
    • …
    corecore