5 research outputs found

    Fucosylated Human Milk Oligosaccharides during the First 12 Postnatal Weeks Are Associated with Better Executive Functions in Toddlers

    No full text
    Human milk oligosaccharides (HMOs) are one of the most abundant solid components in a mother's milk. Animal studies have confirmed a link between early life exposure to HMOs and better cognitive outcomes in the offspring. Human studies on HMOs and associations with later child cognition are scarce. In this preregistered longitudinal study, we investigated whether human milk 2'-fucosyllactose, 3'-sialyllactose, 6'-sialyllactose, grouped fucosylated HMOs, and grouped sialylated HMOs, assessed during the first twelve postnatal weeks, are associated with better child executive functions at age three years. At infant age two, six, and twelve weeks, a sample of human milk was collected by mothers who were exclusively (n = 45) or partially breastfeeding (n = 18). HMO composition was analysed by use of porous graphitized carbon-ultra high-performance liquid chromatography-mass spectrometry. Executive functions were assessed at age three years with two executive function questionnaires independently filled in by mothers and their partners, and four behavioural tasks. Multiple regression analyses were performed in R. Results indicated that concentrations of 2'-fucosyllactose and grouped fucosylated HMOs were associated with better executive functions, while concentrations of grouped sialylated HMOs were associated with worse executive functions at age three years. Future studies on HMOs that sample frequently during the first months of life and experimental HMO administration studies in exclusively formula-fed infants can further reveal associations with child cognitive development and uncover potential causality and sensitive periods

    Milk Oligosaccharide Variation in Sow Milk and Milk Oligosaccharide Fermentation in Piglet Intestine

    No full text
    Porcine milk oligosaccharides (PMOs) were analyzed in six colostrum and two mature milk samples from Dutch Landrace sows. In total, 35 PMOs were recognized of which 13 were new for the PMO literature: neutral HexNAc-Hex, β4'-galactosyllactose, putative GalNAc(α/β1-3)Gal(β1-4)Glc, lacto-N-fucopentaose-II, lacto-N-tetraose, galactose substituted lacto-N-neohexaose, lacto-N-hexaose and difucosyl-lacto-N-hexaose, and acidic Neu5Ac(α2-6)GlcNAc(β1-3)Gal(β1-4)Glc, sialyllacto-N-tetraose-a and -b, Neu5Ac2-Hex3, and sialyllacto-N-fucopentaose-II. PMOs were analyzed using capillary electrophoresis with laser-induced florescence detection or mass spectrometry and using liquid chromatography with mass spectrometry. Interindividual variation regarding PMO presence and concentration was observed between porcine milks. Within a limited sample set, a 43% decrease of the major PMOs was found during a 1 w lactation period. Interestingly, while some PMOs decreased, some other PMOs increased in concentration. PMOs were also monitored in fecal samples of suckling piglets. In feces of 1-2 d old piglets, few intact PMOs were found, indicating considerable PMO fermentation at early stage of life

    Food and/or feed compositions for preventing and treating inflammatory diseases

    No full text
    This invention relates generally to compositions and methods for combating inflammatory disease and particularly to the use of food and/or feed compositions for preventing, reducing and/or treating inflammatory disorders, diseases, or discomforts, wherein the compositions comprising at least one specific pectin
    corecore