38 research outputs found

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    Trophic macrophages in development and disease

    Get PDF
    Specialized phagocytes are found in the most primitive multicellular organisms. Their roles in homeostasis and in distinguishing self from non-self have evolved with the complexity of organisms and their immune systems. Equally important, but often overlooked, are the roles of macrophages in tissue development. As discussed in this Review, these include functions in branching morphogenesis, neuronal patterning, angiogenesis, bone morphogenesis and the generation of adipose tissue. In each case, macrophage depletion impairs the formation of the tissue and compromises its function. I argue that in several diseases, the unrestrained acquisition of these developmental macrophage functions exacerbates pathology. For example, macrophages enhance tumour progression and metastasis by affecting tumour-cell migration and invasion, as well as angiogenesis

    Confidence interval computation method for dynamic performance evaluations of solar thermal collectors

    No full text
    For the further development and dissemination of solar thermal technology, a continuous demonstration of its reliability is required. For this purpose, meaningful performance and acceptance testing is indispensable. The reliable determination of optical and thermal collector performance parameters involves a suitable testing and evaluation procedure. It additionally requires a dependable quality assessment of the test results. Sophisticated statistical inference calculations, however, are not commonly available in solar thermal collector testing. If applied at all, mostly standardly implemented (linear) confidence interval computations are used. The present publication proposes an advanced approach of confidence level computation, the so-called bootstrapping technique. It represents a common method in the area of economics and is suited to cope with the complexity of confidence calculations within the context of dynamic performance testing. The basic methodology and specific implementation of the bootstrapping approach are introduced in detail. Since this approach is new in performance evaluation procedures, it is validated with confidence results obtained from an extensive evaluation of a large measurement data basis of a linear Fresnel process heat collector. However, the procedure is equally suited for other collector types as parabolic trough, flat plate, and others. The validation with measurement data reveals the valuable capabilities of the bootstrap procedure. It moreover proves the standard confidence methods to fail, because these provide unrealistically narrow confidence intervals. Comparative results between the different methods are thoroughly discussed. They demonstrate the introduced bootstrapping approach to be a powerful tool, generating considerably more representative and therefore reliable confidence intervals than the customary methods. Consequently, bootstrapping is considered a key feature of an enhanced performance evaluation method, since it may provide improved information concerning parameter distribution, confidence levels, and hence the validity of corresponding test results. Meaningful performance testing represents an essential aspect to further increase the viability and reliability of the solar thermal technology in order to facilitate its easier commissioning and wide acceptance
    corecore