1,459 research outputs found

    Ultrafast Spin Dynamics in Nickel

    Full text link
    The spin dynamics in Ni is studied by an exact diagonalization method on the ultrafast time scale. It is shown that the femtosecond relaxation of the magneto-optical response results from exchange interaction and spin-orbit coupling. Each of the two mechanisms affects the relaxation process differently. We find that the intrinsic spin dynamics occurs during about 10 fs while extrinsic effects such as laser-pulse duration and spectral width can slow down the observed dynamics considerably. Thus, our theory indicates that there is still room to accelerate the spin dynamics in experiments.Comment: 4 pages, Latex, 4 postscript figure

    Rare occult macular dystrophy with a pathogenic variant in the RP1L1 gene in a patient of Swiss descent

    Get PDF
    Purpose: We report a first case of bilateral occult macular dystrophy (OMD) with a c.133C>T (p.Arg45Trp) pathogenic variant in the retinitis pigmentosa 1-like 1 (RP1L1) gene in a patient of Caucasian Swiss decent. Observations: A 34-year-old man presented with decreased visual acuity known since childhood. Fundus examination of both eyes revealed no pathology other than mildly increased granularity of the foveal retinal pigment epithelium. The full-field electroretinogram (ffERG) presented with normal findings while the multifocal electroretinogram (mfERG) showed severely reduced amplitudes of the foveal response. Optical coherence tomography (OCT) showed foveal outer retinal atrophy. Fundus autofluorescence (FAF) imaging demonstrated near-normal findings with minimal mottling at the posterior pole. The genetic analysis revealed a heterozygous pathogenic variant (c.133C>T, p.Arg45Trp) in the RP1L1 gene. Conclusion and importance: Our present case suggests that OMD shows a wide range of clinical presentations with a variety of ophthalmological findings, age of disease onset, visual acuity, and genetic diversity

    L- and M-Cone–Driven Electroretinograms in Stargardt’s Macular Dystrophy–Fundus Flavimaculatus

    Get PDF
    purpose. To study the dynamics of the long (L)- and middle (M)-wavelength–sensitive cone-driven pathways and their interactions in patients with Stargardt’s macular dystrophy-fundus flavimaculatus (SMD-FF) and to correlate them with other clinical parameters and individual genotypes. methods. Forty-seven patients with SMD-FF participated in the study. In addition to standard 30-Hz flicker electroretinograms (30-Hz fERG), ERG responses were measured to stimuli that modulated exclusively the L or the M cones (L/M cones) or the two simultaneously. Blood samples were screened for mutations in the 50 exons of the ABCA4 gene. results. Patients with SMD-FF did not show a decrease in the mean L/M-cone–driven ERG sensitivity, but there was a significant increase in the interindividual variability. The mean L-/M-cone weighting ratio was normal. However, the L-cone–driven ERG was significantly phase delayed, whereas the M-cone–driven ERG was significantly phase advanced. These phase changes were significantly correlated with disease duration. The amplitude and implicit time of the standard 30-Hz fERG both correlated significantly with the L/M-cone–driven ERG sensitivity and with the phase difference between the L/M-cone–driven ERGs, indicating the complex origin of the standard 30-Hz fERG. Probable disease-associated mutations in the ABCA4 gene were found in 40 of 45 patients, suggesting that they form a genetically fairly uniform SMD-FF study group. There was no correlation between the genotype and the L/M-cone–driven ERGs. conclusions. The changes in L/M-cone–driven ERG sensitivity and phase possibly represent two independent disease processes. The phase changes are similar to those found in patients with retinitis pigmentosa and possibly are a general feature of retinal dystrophies

    Alterations of slow and fast rod ERG signals in patients with molecularly confirmed Stargardt disease type 1 (STGD1)

    Get PDF
    purpose. To investigate the slow and fast rod signals of the scotopic 15-Hz flicker ERG in patients with molecularly confirmed Stargardt disease type I (STGD1). There is evidence that these slow and the fast rod ERG signals can be attributed to the rod bipolar–AII cell pathway and the rod–cone coupling pathway, respectively. methods. Twenty-seven patients with STGD1 with mutations in both alleles of the ABCA4 gene were included. Scotopic ERG response amplitudes and phases to flicker intensities ranging from −3.37 to −0.57 log scotopic troland · sec (log scot td · sec) were measured at a flicker frequency of 15 Hz. In addition, scotopic standard ERGs were obtained. Twenty-two normal subjects served as controls. results. The amplitudes of both the slow and fast rod ERG signals were significantly reduced in the STGD1 group. The phases of the slow rod signals lagged significantly, whereas those of the fast rod signals did not. The standard scotopic ERG did not reveal significant alterations. conclusions. The results provide evidence that a defective ABCA4 transporter can functionally affect both the rod bipolar–AII cell pathway and the rod–cone coupling pathway. In STGD1, the scotopic 15-Hz flicker ERG may reveal subtle abnormalities at different sites within the rod system that remain undetected by standard ERG techniques

    Longitudinal Study of Optic Disk Perfusion and Retinal Structure in Leber's Hereditary Optic Neuropathy

    Get PDF
    PURPOSE. The purpose of this study was to evaluate optic disk perfusion and neural retinal structure in patients with subacute Leber's hereditary optic neuropathy (LHON) and LHON carriers, as compared with healthy controls. METHODS. This study included 8 patients with LHON in the subacute stage, 10 asymptomatic carriers of a LHON-associated mitochondrial DNA mutation, and 40 controls. All subjects underwent measurement of the retinal nerve fiber layer (RNFL) thickness, the ganglion cell-inner plexiform layer (GCIPL) thickness using optical coherence tomography and optic disk microvascular perfusion (Mean Tissue [MT]) using laser speckle flowgraphy (LSFG). Patients were re-examined after a median interval of 3 months from the baseline visit. RESULTS. LHON carriers had higher values of RNFL thickness, GCIPL thickness, and disk area than controls (P < 0.05), whereas MT was not different between the two groups (P = 0.936). Median MT and RNFL thickness were 32% and 15% higher in the early subacute stage of the disease than in controls (P < 0.001 and P = 0.001). MT declined below the values of controls during the late subacute stage (P = 0.024), whereas RNFL thickness declined later during the dynamic stage (P < 0.001). GCIPL thickness was lower in patients with LHON than in controls independently of the stage of the disease (P < 0.001). CONCLUSIONS. The high blood flow at the optic disk during the early subacute stage may be the consequence of vasodilation due to nitric oxide release as compensation to mitochondrial impairment. Optic disk perfusion as measured by LSFG is a promising biomarker for LHON diagnosis and monitoring as well as an objective outcome measure for assessing response to therapies

    Ultrafast spin dynamics and critical behavior in half-metallic ferromagnet : Sr_2FeMoO_6

    Full text link
    Ultrafast spin dynamics in ferromagnetic half-metallic compound Sr_2FeMoO_6 is investigated by pump-probe measurements of magneto-optical Kerr effect. Half-metallic nature of this material gives rise to anomalous thermal insulation between spins and electrons, and allows us to pursue the spin dynamics from a few to several hundred picoseconds after the optical excitation. The optically detected magnetization dynamics clearly shows the crossover from microscopic photoinduced demagnetization to macroscopic critical behavior with universal power law divergence of relaxation time for wide dynamical critical region.Comment: 14 pages, 4 figures. Abstract and Figures 1 & 3 are correcte

    Paleomagnetic evidence for a partially differentiated ordinary chondrite parent asteroid

    Get PDF
    The textures and accretion ages of chondrites have been used to argue that their parent asteroids never differentiated. Without a core, undifferentiated planetesimals could not have generated magnetic fields through dynamo activity, so chondrites are not expected to have experienced such fields. However, the magnetic remanence carried by the CV chondrites is consistent with dynamo‐generated fields, hinting that partially differentiated asteroids consisting of an unmelted crust atop a differentiated interior may exist. Here, we test this hypothesis by applying synchrotron X‐ray microscopy to metallic veins in the slowly cooled H6 chondrite Portales Valley. The magnetic remanence carried by nanostructures in these veins indicates that this meteorite recorded a magnetic field over a period of tens to hundreds of years at ∼100 Myr after solar system formation. These properties are inconsistent with external field sources such as the nebula, solar wind, or impacts, but are consistent with dynamo‐generated fields, indicating that the H chondrite parent body contained an advecting metallic core and was therefore partially differentiated. We calculate the thermal evolution of the chondritic portions of partially differentiated asteroids that form through incremental accretion across 105 to 106 years, finding this can agree with the measured ages and cooling rates of multiple H chondrites. We also predict that the cores of these bodies could have been partially liquid and feasibly generating a dynamo at 100 Myr after solar system formation. These observations contribute to a growing body of evidence supporting a spectrum of internal differentiation within some asteroids with primitive surfaces

    A customized stand-alone photometric Raman sensor applicable in explosive atmospheres: a proof-of-concept study

    Get PDF
    This paper presents an explosion-proof two-channel Raman photometer designed for chemical process monitoring in hazardous explosive atmospheres. Due to its design, alignment of components is simplified and economic in comparison to spectrometer systems. Raman spectrometers have the potential of becoming an increasingly important tool in process analysis technologies as part of molecular-specific concentration monitoring. However, in addition to the required laser power, which restricts use in potentially explosive atmospheres, the financial hurdle is also high. Within the scope of a proof of concept, it is shown that photometric measurements of Raman scattering are possible. The use of highly sensitive detectors allows the required excitation power to be reduced to levels compliant for operation in potentially explosive atmospheres. The addition of an embedded platform enables stable use as a self-sufficient sensor, since it carries out all calculations internally.Multi-pixel photon counters (MPPCs) with large detection areas of 1350&thinsp;µm2 are implemented as detectors. As a result, the sensitivity of the sensor is strongly increased. This gain in sensitivity is primarily achieved through two characteristics: first, the operating principle avalanche breakdown to detect single photons is used; second, the size of the image projected onto the MPPC is much bigger than the pixel area in competing Raman-Spectrometers resulting in higher photon flux. This combination enables reduction of the required excitation power to levels compliant for operation in potentially explosive atmospheres. All presented experiments are performed with strongly attenuated laser power of 35&thinsp;mW. These include the monitoring of the analytes ethanol and hydrogen peroxide as well as the reversible binding of CO2 to amine. Accordingly, the described embedded sensor is ideally suited as a process analytical technology (PAT) tool for applications in environments with limitations on power input.</p

    Preparation of amino-substituted indenes and 1,4-dihydronaphthalenes using a one-pot multireaction approach: total synthesis of oxybenzo[c]phenanthridine alkaloids

    Get PDF
    Allylic trichloroacetimidates bearing a 2-vinyl or 2-allylaryl group have been designed as substrates for a one-pot, two-step multi-bond-forming process leading to the general preparation of aminoindenes and amino-substituted 1,4-dihydronaphthalenes. The synthetic utility of the privileged structures formed from this one-pot process was demonstrated with the total synthesis of four oxybenzo[c]phenanthridine alkaloids, oxychelerythrine, oxysanguinarine, oxynitidine, and oxyavicine. An intramolecular biaryl Heck coupling reaction, catalyzed using the Hermann–Beller palladacycle was used to effect the key step during the synthesis of the natural products

    Future research on information technology in knowledge management

    Get PDF
    Over the past two decades, knowledge management (KM) and the use of information technologies (IT) has attracted increasing interest. IT is widely considered as a vital part of KM, providing means for knowledge creation, sharing, and capture. However, failures of KM in organizational practice are often attributed to an overemphasis of IT. Although KM and IT seem inextricably linked, research still struggles to identify a proper composition of the two. Via input from a global panel of KM experts from academia and practice (n = 222), we identify social software; consumerization (of knowledge); human factors; and the redesign of work, systems, and practices as future key research areas. These are contrasted with review papers proposing research in technologies aimed at supporting KM. On this basis, we present a future research agenda that should enhance the relationship between KM and IT, including their intersection through technology enablers
    corecore