6 research outputs found

    Similarity of High-Resolution Tandem Mass Spectrometry Spectra of Structurally Related Micropollutants and Transformation Products

    No full text
    High-resolution tandem mass spectrometry (HRMS2) with electrospray ionization is frequently applied to study polar organic molecules such as micropollutants. Fragmentation provides structural information to confirm structures of known compounds or propose structures of unknown compounds. Similarity of HRMS2 spectra between structurally related compounds has been suggested to facilitate identification of unknown compounds. To test this hypothesis, the similarity of reference standard HRMS2 spectra was calculated for 243 pairs of micropollutants and their structurally related transformation products (TPs); for comparison, spectral similarity was also calculated for 219 pairs of unrelated compounds. Spectra were measured on Orbitrap and QTOF mass spectrometers and similarity was calculated with the dot product. The influence of different factors on spectral similarity [e.g., normalized collision energy (NCE), merging fragments from all NCEs, and shifting fragments by the mass difference of the pair] was considered. Spectral similarity increased at higher NCEs and highest similarity scores for related pairs were obtained with merged spectra including measured fragments and shifted fragments. Removal of the monoisotopic peak was critical to reduce false positives. Using a spectral similarity score threshold of 0.52, 40% of related pairs and 0% of unrelated pairs were above this value. Structural similarity was estimated with the Tanimoto coefficient and pairs with higher structural similarity generally had higher spectral similarity. Pairs where one or both compounds contained heteroatoms such as sulfur often resulted in dissimilar spectra. This work demonstrates that HRMS2 spectral similarity may indicate structural similarity and that spectral similarity can be used in the future to screen complex samples for related compounds such as micropollutants and TPs, assisting in the prioritization of non-target compounds. [Figure not available: see fulltext.]. © 2017, American Society for Mass Spectrometry

    Non-target metabolomic profiling of the marine microalgae Dunaliella tertiolecta after exposure to diuron using complementary high-resolution analytical techniques

    No full text
    Traditionally, bioassays are used to assess the toxicity of chemicals. Bioassays often focus on one specific mode of action or end point and their responses offer a limited understanding of the health status and underlying pathways of the species under consideration. Metabolomics can be used to detect hundreds of metabolites in which each metabolite, or set of metabolites, represents short term and long term changes, indicating the status of the organism. The effects of the herbicide diuron, one of the compounds of concern for European water bodies, on the marine microalgae Dunaliella tertiolecta were investigated through non-target metabolomic profiling and bioassay testing. The pulse amplitude modulation (PAM) fluorometry bioassay was employed to measure the effective photosystem II efficiency (ϕPSII), while non-target metabolomic profiling using complementary analytical techniques characterized the metabolomic response in the algae during diuron exposure. The use of complementary analytical techniques was necessary to identify a broad range of metabolites. Twenty-eight compounds were identified as metabolites affected by diuron exposure, including several amino acids, adenosine, lactic acid, and citric acid. Collectively, these metabolites indicated that diuron negatively affects energy processes in the algae both at the citric acid cycle pathway as well as on the amino acid metabolism at realistic environmental concentrations. In addition, dose-response relationships were found between a number of affected metabolites and the inhibition of the ΦPSII of D. tertiolecta. Non-target metabolomic profiling using complementary analytical techniques proved to have additional and complementary benefits to traditional toxicology tests

    Nontarget Screening Reveals Time Trends of Polar Micropollutants in a Riverbank Filtration System

    No full text
    The historic emissions of polar micropollutants in a natural drinking water source were investigated by nontarget screening with high-resolution mass spectrometry and open cheminformatics tools. The study area consisted of a riverbank filtration transect fed by the river Lek, a branch of the lower Rhine, and exhibiting up to 60-year travel time. More than 18,000 profiles were detected. Hierarchical clustering revealed that 43% of the 15 most populated clusters were characterized by intensity trends with maxima in the 1990s, reflecting intensified human activities, wastewater treatment plant upgrades and regulation in the Rhine riparian countries. Tentative structure annotation was performed using automated in silico fragmentation. Candidate structures retrieved from ChemSpider were scored based on the fit of the in silico fragments to the experimental tandem mass spectra, similarity to openly accessible accurate mass spectra, associated metadata, and presence in a suspect list. Sixty-seven unique structures (72 over both ionization modes) were tentatively identified, 25 of which were confirmed and included contaminants so far unknown to occur in bank filtrate or in natural waters at all, such as tetramethylsulfamide. This study demonstrates that many classes of hydrophilic organics enter riverbank filtration systems, persisting and migrating for decades if biogeochemical conditions are stable

    Nontarget Screening Reveals Time Trends of Polar Micropollutants in a Riverbank Filtration System

    Get PDF
    The historic emissions of polar micropollutants in a natural drinking water source were investigated by nontarget screening with high-resolution mass spectrometry and open cheminformatics tools. The study area consisted of a riverbank filtration transect fed by the river Lek, a branch of the lower Rhine, and exhibiting up to 60-year travel time. More than 18,000 profiles were detected. Hierarchical clustering revealed that 43% of the 15 most populated clusters were characterized by intensity trends with maxima in the 1990s, reflecting intensified human activities, wastewater treatment plant upgrades and regulation in the Rhine riparian countries. Tentative structure annotation was performed using automated in silico fragmentation. Candidate structures retrieved from ChemSpider were scored based on the fit of the in silico fragments to the experimental tandem mass spectra, similarity to openly accessible accurate mass spectra, associated metadata, and presence in a suspect list. Sixty-seven unique structures (72 over both ionization modes) were tentatively identified, 25 of which were confirmed and included contaminants so far unknown to occur in bank filtrate or in natural waters at all, such as tetramethylsulfamide. This study demonstrates that many classes of hydrophilic organics enter riverbank filtration systems, persisting and migrating for decades if biogeochemical conditions are stable
    corecore