4 research outputs found

    Kinetic Blocks: Actuated Constructive Assembly for Interaction and Display

    Get PDF
    Pin-based shape displays not only give physical form to digital information, they have the inherent ability to accurately move and manipulate objects placed on top of them. In this paper we focus on such object manipulation: we present ideas and techniques that use the underlying shape change to give kinetic ability to otherwise inanimate objects. First, we describe the shape display's ability to assemble, disassemble, and reassemble structures from simple passive building blocks through stacking, scaffolding, and catapulting. A technical evaluation demonstrates the reliability of the presented techniques. Second, we introduce special kinematic blocks that are actuated and sensed through the underlying pins. These blocks translate vertical pin movements into other degrees of freedom like rotation or horizontal movement. This interplay of the shape display with objects on its surface allows us to render otherwise inaccessible forms, like overhangs, and enables richer input and output

    Cord UIs: Controlling Devices with Augmented Cables

    Get PDF
    Cord UIs are sensorial augmented cords that allow for simple metaphor-rich interactions to interface with their connected devices. Cords offer a large underexplored space for interactions as well as unique properties and a diverse set of metaphors that make them potentially interesting tangible interfaces. We use cords as input devices and explore different interactions like tying knots, stretching, pinching and kinking to control the flow of data and/or power. We also look at ways to use objects in combination with augmented cords to manipulate data or properties of a device. For instance, placing a clamp on a cable can obstruct the audio signal to the headphones. Using special materials such as piezo copolymer cables and stretchable cords we built five working prototypes to showcase the interactions described in this paper

    Physical object augmentation and actuation for display and interaction on shape changing interfaces

    No full text
    Thesis: S.M., Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2015.Cataloged from PDF version of thesis.Includes bibliographical references (pages 81-87).Pin based shape displays can not only give physical form to digital information, but they have the inherent ability to accurately move and manipulate objects that are placed on top of them. This document presents ways and ideas that show how a shape display's dynamic shape changing ability can work in unison with physical objects that are placed on top of it. First, we introduce the idea of shape synthesis, which is the physical augmentation of inert physical objects with the dynamic shape to create a seemingly new object. This synthesized object combines the advantages of the inert object's natural affordances with the computational power of dynamic shape change. In so doing, we can substitute for passive objects, complement passive objects and enable easier interactions with a shape display. We then show that a shape display can be used to assemble, disassemble and reassemble structures from simple passive building blocks through stacking, scaffolding and catapulting. Then, we introduce special unpowered kinematic modules that can be driven and sensed through the underlying pins. These modules can translate the vertical pin movement into other degrees of freedom like rotation or horizontal movement. This suggests that a shape display can be regarded as a versatile physical control platform that can drive and control a variety of useful mechanisms and objects.by Philipp Schoessler.S.M

    TRANSFORM

    No full text
    TRANSFORM fuses technology and design to celebrate the transformation from a piece of static furniture to a dynamic machine driven by streams of data and energy. TRANSFORM aims to inspire viewers with unexpected transformations, as well as the aesthetics of a complex machine in motion. This paper describes the concept, engine, product, and motion design of TRANSFORM, which was first exhibited at LEXUS DESIGN AMAZING 2014 MILAN in April 2014
    corecore