36 research outputs found

    Structure of a mouse erythroid 5-aminolevulinate synthase gene and mapping of erythroid-specific DNAse I hypersensitive sites.

    No full text
    The enzyme 5-aminolevulinate synthase (ALA-S) catalyzes the first step in heme biosynthesis. In this study, the mouse erythroid gene has been cloned and analyzed in order to investigate the regulation of ALA-S expression during erythroid differentiation. The gene spans approximately kbp and consists of 11 exons and 10 introns. The first exon is 37 bp, non-coding, and followed by a 6kb intron. The mRNA capsite was mapped by primer extension and defines a promoter that contains no apparent TATA element. S1 nuclease analysis detects the presence at low levels of a 45 bp-deleted form of the ALA-S mRNA created by the use of an alternative splice site at the intron 2/exon 3 junction. Five DNAse I hypersensitive sites were detected in chromatin from uninduced and induced MEL cells. One site is at the promoter; the others are in the body of the gene. No significant differences were observed in the patterns or intensity of the hypersensitive sites in the uninduced and induced MEL cells, however, no sites in ALA-S were observed in NIH 3T3 cells or in deproteinized DNA. Thus, these sites are specific for erythroid chromatin but appear to be established at an earlier stage of differentiation than represented by the uninduced MEL cell

    Differential Roles of Interleukin-18 (IL-18) and IL-12 for Induction of Gamma Interferon by Staphylococcal Cell Wall Components and Superantigens

    No full text
    The roles of endogenous cytokines induced by either intact staphylococcal microorganisms or staphylococcal exotoxins were examined using human whole-blood cultures. To accomplish this, interleukin-18 binding protein (IL-18BP) and tumor necrosis factor binding protein (TNFbp) were used to neutralize IL-18 and TNF, respectively, whereas an anti-IL-12 monoclonal antibody was used to neutralize IL-12 and the IL-1 receptor antagonist (IL-1Ra) was used to block IL-1 receptors. Heat-killed Staphylococcus epidermidis and Staphylococcus aureus, as well as the staphylococcal superantigens toxic shock syndrome toxin-1 (TSST-1) and staphylococcus enterotoxin B (SEB) induced gamma interferon (IFN-γ) production. Staphylococcus spp.-induced production of IFN-γ required the presence of endogenous IL-18, IL-12, and TNF. In contrast, TSST-1-induced IFN-γ was not significantly reduced in the presence of IL-18BP, anti-IL-12 antibodies, IL-1Ra, or anti-TNFbp. SEB-induced IFN-γ was significantly inhibited only by anti-IL-12 antibodies, indicating that endogenous IL-18, IL-1, and TNF are not required for SEB-induced IFN-γ. In conclusion, the mechanisms of IFN-γ stimulation by intact staphylococcal microorganisms and by exotoxins differ, and this is likely due to the different receptors which are triggered on the cell membranes. In contrast to its role in the interactions between staphylococci and host cells, IL-18 does not appear to play a major role in superantigen-induced IFN-γ
    corecore